BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28858475)

  • 21. Dysprosium and Holmium Vanadate Nanoprobes as High-Performance Contrast Agents for High-Field Magnetic Resonance and Computed Tomography Imaging.
    Gómez-Gónzalez E; Núñez NO; Caro C; García-Martín ML; Fernández-Afonso Y; de la Fuente JM; Balcerzyk M; Ocaña M
    Inorg Chem; 2021 Jan; 60(1):152-160. PubMed ID: 33201695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Folate-targeted gadolinium-lipid-based nanoparticles as a bimodal contrast agent for tumor fluorescent and magnetic resonance imaging.
    Nakamura T; Kawano K; Shiraishi K; Yokoyama M; Maitani Y
    Biol Pharm Bull; 2014; 37(4):521-7. PubMed ID: 24694600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MR/NIRF Dual-Mode Imaging of αvβ3 Integrin-Overexpressing Tumors Using a Lipopeptide-Based Contrast Agent.
    Wang Q; Huang L; Zhu X; Zhou Y; Wang J; Su D; Liu L
    Mol Pharm; 2021 Dec; 18(12):4543-4552. PubMed ID: 34677979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target-Specific Magnetic Resonance Imaging of Human Prostate Adenocarcinoma Using NaDyF
    Dash A; Blasiak B; Tomanek B; Latta P; van Veggel FCJM
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24345-24355. PubMed ID: 34024098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gastrin-releasing peptide receptor-targeted gadolinium oxide-based multifunctional nanoparticles for dual magnetic resonance/fluorescent molecular imaging of prostate cancer.
    Cui D; Lu X; Yan C; Liu X; Hou M; Xia Q; Xu Y; Liu R
    Int J Nanomedicine; 2017; 12():6787-6797. PubMed ID: 28979118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vivo Dual-Modality Fluorescence and Magnetic Resonance Imaging-Guided Lymph Node Mapping with Good Biocompatibility Manganese Oxide Nanoparticles.
    Zhan Y; Zhan W; Li H; Xu X; Cao X; Zhu S; Liang J; Chen X
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29231865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescent magnetic nanoparticles with specific targeting functions for combinded targeting, optical imaging and magnetic resonance imaging.
    Chen YC; Chang WH; Wang SJ; Hsieh WY
    J Biomater Sci Polym Ed; 2012; 23(15):1903-22. PubMed ID: 22024467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PSA targeted dual-modality manganese oxide-mesoporous silica nanoparticles for prostate cancer imaging.
    Du D; Fu HJ; Ren WW; Li XL; Guo LH
    Biomed Pharmacother; 2020 Jan; 121():109614. PubMed ID: 31731188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents.
    Lisy MR; Hartung A; Lang C; Schüler D; Richter W; Reichenbach JR; Kaiser WA; Hilger I
    Invest Radiol; 2007 Apr; 42(4):235-41. PubMed ID: 17351430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tumor-Targeting Multifunctional Rattle-Type Theranostic Nanoparticles for MRI/NIRF Bimodal Imaging and Delivery of Hydrophobic Drugs.
    Jiao Y; Sun Y; Tang X; Ren Q; Yang W
    Small; 2015 Apr; 11(16):1962-74. PubMed ID: 25504837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tumor targeting and MR imaging with lipophilic cyanine-mediated near-infrared responsive porous Gd silicate nanoparticles.
    Yeh CS; Su CH; Ho WY; Huang CC; Chang JC; Chien YH; Hung ST; Liau MC; Ho HY
    Biomaterials; 2013 Jul; 34(22):5677-88. PubMed ID: 23639532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities.
    Biffi S; Petrizza L; Garrovo C; Rampazzo E; Andolfi L; Giustetto P; Nikolov I; Kurdi G; Danailov MB; Zauli G; Secchiero P; Prodi L
    Int J Nanomedicine; 2016; 11():4865-4874. PubMed ID: 27703352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plectin-1 Targeted Dual-modality Nanoparticles for Pancreatic Cancer Imaging.
    Chen X; Zhou H; Li X; Duan N; Hu S; Liu Y; Yue Y; Song L; Zhang Y; Li D; Wang Z
    EBioMedicine; 2018 Apr; 30():129-137. PubMed ID: 29574092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NaDyF4 Nanoparticles as T2 Contrast Agents for Ultrahigh Field Magnetic Resonance Imaging.
    Das GK; Johnson NJ; Cramen J; Blasiak B; Latta P; Tomanek B; van Veggel FC
    J Phys Chem Lett; 2012 Feb; 3(4):524-9. PubMed ID: 26286058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent molecular imaging of metastatic lymph node using near-infrared emitting low molecular weight heparin modified nanoliposome based on enzyme-substrate interaction.
    Ye T; Zhang H; Chen G; Shang L; Wang S
    Contrast Media Mol Imaging; 2016 Nov; 11(6):482-491. PubMed ID: 27585841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological stability evaluation of the α2β1 receptor imaging agents: diamsar and DOTA conjugated DGEA peptide.
    Huang CW; Li Z; Cai H; Shahinian T; Conti PS
    Bioconjug Chem; 2011 Feb; 22(2):256-63. PubMed ID: 21244039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor targeting with DGEA peptide ligands: a new aromatic peptide amphiphile for imaging cancers.
    Zhan FK; Liu JC; Cheng B; Liu YC; Lai TS; Lin HC; Yeh MY
    Chem Commun (Camb); 2019 Jan; 55(8):1060-1063. PubMed ID: 30617356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon Dots Doped with Dysprosium: A Bimodal Nanoprobe for MRI and Fluorescence Imaging.
    Atabaev TS; Piao Z; Molkenova A
    J Funct Biomater; 2018 May; 9(2):. PubMed ID: 29783645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viral nanoparticles for in vivo tumor imaging.
    Wen AM; Lee KL; Yildiz I; Bruckman MA; Shukla S; Steinmetz NF
    J Vis Exp; 2012 Nov; (69):e4352. PubMed ID: 23183850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent.
    Norek M; Kampert E; Zeitler U; Peters JA
    J Am Chem Soc; 2008 Apr; 130(15):5335-40. PubMed ID: 18355014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.