These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28858476)

  • 1. Carbon Capture and Utilization in the Industrial Sector.
    Psarras PC; Comello S; Bains P; Charoensawadpong P; Reichelstein S; Wilcox J
    Environ Sci Technol; 2017 Oct; 51(19):11440-11449. PubMed ID: 28858476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost Analysis of Carbon Capture and Sequestration of Process Emissions from the U.S. Industrial Sector.
    Pilorgé H; McQueen N; Maynard D; Psarras P; He J; Rufael T; Wilcox J
    Environ Sci Technol; 2020 Jun; 54(12):7524-7532. PubMed ID: 32432460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economics of carbon dioxide capture and utilization-a supply and demand perspective.
    Naims H
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22226-22241. PubMed ID: 27189450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost Analysis of Carbon Capture and Sequestration from U.S. Natural Gas-Fired Power Plants.
    Psarras P; He J; Pilorgé H; McQueen N; Jensen-Fellows A; Kian K; Wilcox J
    Environ Sci Technol; 2020 May; 54(10):6272-6280. PubMed ID: 32329614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 deserts: implications of existing CO2 supply limitations for carbon management.
    Middleton RS; Clarens AF; Liu X; Bielicki JM; Levine JS
    Environ Sci Technol; 2014 Oct; 48(19):11713-20. PubMed ID: 25137398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is Carbon Capture and Storage (CCS) Really So Expensive? An Analysis of Cascading Costs and CO
    Subraveti SG; Rodríguez Angel E; Ramírez A; Roussanaly S
    Environ Sci Technol; 2023 Feb; 57(6):2595-2601. PubMed ID: 36731169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.
    Kirchofer A; Becker A; Brandt A; Wilcox J
    Environ Sci Technol; 2013 Jul; 47(13):7548-54. PubMed ID: 23738892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing the cost of Ca-based direct air capture of CO2.
    Zeman F
    Environ Sci Technol; 2014 Oct; 48(19):11730-5. PubMed ID: 25207956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.
    Tian S; Jiang J; Chen X; Yan F; Li K
    ChemSusChem; 2013 Dec; 6(12):2348-55. PubMed ID: 23913597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves.
    von der Assen N; Müller LJ; Steingrube A; Voll P; Bardow A
    Environ Sci Technol; 2016 Feb; 50(3):1093-101. PubMed ID: 26752014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-term deployment of carbon capture and sequestration from biorefineries in the United States.
    Sanchez DL; Johnson N; McCoy ST; Turner PA; Mach KJ
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4875-4880. PubMed ID: 29686063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.
    Morales-Flórez V; Santos A; López A; Moriña I; Esquivias L
    Waste Manag Res; 2014 Dec; 32(12):1178-85. PubMed ID: 25012303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial stochastic modeling of sedimentary formations to assess CO2 storage potential.
    Popova OH; Small MJ; McCoy ST; Thomas AC; Rose S; Karimi B; Carter K; Goodman A
    Environ Sci Technol; 2014 Jun; 48(11):6247-55. PubMed ID: 24824160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonic anhydrase to boost CO
    de Oliveira Maciel A; Christakopoulos P; Rova U; Antonopoulou I
    Chemosphere; 2022 Jul; 299():134419. PubMed ID: 35364080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turning carbon dioxide into fuel.
    Jiang Z; Xiao T; Kuznetsov VL; Edwards PP
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3343-64. PubMed ID: 20566515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.
    Ağralı S; Üçtuğ FG; Türkmen BA
    J Environ Manage; 2018 Jun; 215():305-315. PubMed ID: 29574208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges against CO
    Benhelal E; Shamsaei E; Rashid MI
    J Environ Sci (China); 2021 Jun; 104():84-101. PubMed ID: 33985750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Methanol/Fischer-Tropsch Fuel Production Capacity, Cost, and Carbon Intensity Utilizing CO
    Zang G; Sun P; Yoo E; Elgowainy A; Bafana A; Lee U; Wang M; Supekar S
    Environ Sci Technol; 2021 Jun; 55(11):7595-7604. PubMed ID: 33979128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.
    Rudokas J; Miller PJ; Trail MA; Russell AG
    Environ Sci Technol; 2015 Apr; 49(8):5170-7. PubMed ID: 25803240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.