BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28858529)

  • 1. Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells.
    Pogoda K; Bucki R; Byfield FJ; Cruz K; Lee T; Marcinkiewicz C; Janmey PA
    Biomacromolecules; 2017 Oct; 18(10):3040-3051. PubMed ID: 28858529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages.
    Her GJ; Wu HC; Chen MH; Chen MY; Chang SC; Wang TW
    Acta Biomater; 2013 Feb; 9(2):5170-80. PubMed ID: 23079022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro.
    Matsuzaki S; Canis M; Pouly JL; Darcha C
    Hum Reprod; 2016 Mar; 31(3):541-53. PubMed ID: 26762314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to enhance the motility of human glioma cells.
    Kim MS; Park MJ; Moon EJ; Kim SJ; Lee CH; Yoo H; Shin SH; Song ES; Lee SH
    Cancer Res; 2005 Feb; 65(3):686-91. PubMed ID: 15705860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft Hyaluronic Gels Promote Cell Spreading, Stress Fibers, Focal Adhesion, and Membrane Tension by Phosphoinositide Signaling, Not Traction Force.
    Mandal K; Raz-Ben Aroush D; Graber ZT; Wu B; Park CY; Fredberg JJ; Guo W; Baumgart T; Janmey PA
    ACS Nano; 2019 Jan; 13(1):203-214. PubMed ID: 30500159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pericellular plasma clot negates the influence of scaffold stiffness on chondrogenic differentiation.
    Arora A; Kothari A; Katti DS
    Acta Biomater; 2016 Dec; 46():68-78. PubMed ID: 27693666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.
    Deegan DB; Zimmerman C; Skardal A; Atala A; Shupe TD
    J Mech Behav Biomed Mater; 2015 Mar; 55():87-103. PubMed ID: 26569044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of substrate stiffness, thickness, and cross-linking density on osteogenic cell behavior.
    Mullen CA; Vaughan TJ; Billiar KL; McNamara LM
    Biophys J; 2015 Apr; 108(7):1604-1612. PubMed ID: 25863052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix.
    Wang X; Dai X; Zhang X; Li X; Xu T; Lan Q
    Biochem Biophys Res Commun; 2018 Apr; 498(4):1052-1057. PubMed ID: 29551682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmentation of integrin-mediated mechanotransduction by hyaluronic acid.
    Chopra A; Murray ME; Byfield FJ; Mendez MG; Halleluyan R; Restle DJ; Raz-Ben Aroush D; Galie PA; Pogoda K; Bucki R; Marcinkiewicz C; Prestwich GD; Zarembinski TI; Chen CS; Puré E; Kresh JY; Janmey PA
    Biomaterials; 2014 Jan; 35(1):71-82. PubMed ID: 24120037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate stiffness regulates B-cell activation, proliferation, class switch, and T-cell-independent antibody responses in vivo.
    Zeng Y; Yi J; Wan Z; Liu K; Song P; Chau A; Wang F; Chang Z; Han W; Zheng W; Chen YH; Xiong C; Liu W
    Eur J Immunol; 2015 Jun; 45(6):1621-34. PubMed ID: 25756957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate elasticity regulates the behavior of human monocyte-derived macrophages.
    Adlerz KM; Aranda-Espinoza H; Hayenga HN
    Eur Biophys J; 2016 May; 45(4):301-9. PubMed ID: 26613613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid.
    Pedron S; Becka E; Harley BA
    Biomaterials; 2013 Oct; 34(30):7408-17. PubMed ID: 23827186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering.
    Donegan GC; Hunt JA; Rhodes N
    J Tissue Eng Regen Med; 2010 Feb; 4(2):83-95. PubMed ID: 19937643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of pigmentation by substrate elasticity in normal human melanocytes and melanotic MNT1 human melanoma cells.
    Choi H; Kim M; Ahn SI; Cho EG; Lee TR; Shin JH
    Exp Dermatol; 2014 Mar; 23(3):172-7. PubMed ID: 24517137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocured biodegradable polymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation.
    Cai L; Zhang L; Dong J; Wang S
    Langmuir; 2012 Aug; 28(34):12557-68. PubMed ID: 22857011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination Stiffness Gradient with Chemical Stimulation Directs Glioma Cell Migration on a Microfluidic Chip.
    Dou J; Mao S; Li H; Lin JM
    Anal Chem; 2020 Jan; 92(1):892-898. PubMed ID: 31790197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of stiffness of chitosan-hyaluronic acid dialdehyde hydrogels on the viability and growth of encapsulated chondrocytes.
    V Thomas L; Vg R; D Nair P
    Int J Biol Macromol; 2017 Nov; 104(Pt B):1925-1935. PubMed ID: 28551436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression stiffening of brain and its effect on mechanosensing by glioma cells.
    Pogoda K; Chin L; Georges PC; Byfield FJ; Bucki R; Kim R; Weaver M; Wells RG; Marcinkiewicz C; Janmey PA
    New J Phys; 2014 Jul; 16():075002. PubMed ID: 25844043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.