These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 28858613)

  • 21. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The neural circuitry supporting successful spatial navigation despite variable movement speeds.
    Sheeran WM; Ahmed OJ
    Neurosci Biobehav Rev; 2020 Jan; 108():821-833. PubMed ID: 31760048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic FPGA-based spatial navigation model with grid cells and place cells.
    Krishna A; Mittal D; Virupaksha SG; Nair AR; Narayanan R; Thakur CS
    Neural Netw; 2021 Jul; 139():45-63. PubMed ID: 33677378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of age in women in visuo-spatial memory in reaching and navigation tasks with and without landmarks.
    Perrochon A; Mandigout S; Petruzzellis S; Soria Garcia N; Zaoui M; Berthoz A; Daviet JC
    Neurosci Lett; 2018 Sep; 684():13-17. PubMed ID: 29966753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Navigating with grid and place cells in cluttered environments.
    Edvardsen V; Bicanski A; Burgess N
    Hippocampus; 2020 Mar; 30(3):220-232. PubMed ID: 31408264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multisensory input modulates memory-guided spatial navigation in humans.
    Iggena D; Jeung S; Maier PM; Ploner CJ; Gramann K; Finke C
    Commun Biol; 2023 Nov; 6(1):1167. PubMed ID: 37963986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Persistent and stable biases in spatial learning mechanisms predict navigational style.
    Furman AJ; Clements-Stephens AM; Marchette SA; Shelton AL
    Cogn Affect Behav Neurosci; 2014 Dec; 14(4):1375-91. PubMed ID: 24830787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory.
    Brown TI; Hasselmo ME; Stern CE
    Hippocampus; 2014 Jul; 24(7):819-39. PubMed ID: 24659134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Are visual cues helpful for virtual spatial navigation and spatial memory in patients with mild cognitive impairment or Alzheimer's disease?
    Cogné M; Auriacombe S; Vasa L; Tison F; Klinger E; Sauzéon H; Joseph PA; N Kaoua B
    Neuropsychology; 2018 May; 32(4):385-400. PubMed ID: 29809030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Empowering episodic memory through a model-based egocentric navigational training.
    Fragueiro A; Tosoni A; Di Matteo R; Committeri G
    Psychol Res; 2023 Sep; 87(6):1743-1752. PubMed ID: 36478126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aging and KIBRA/WWC1 genotype affect spatial memory processes in a virtual navigation task.
    Schuck NW; Doeller CF; Schjeide BM; Schröder J; Frensch PA; Bertram L; Li SC
    Hippocampus; 2013 Oct; 23(10):919-30. PubMed ID: 23733450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grid Cells and Place Cells: An Integrated View of their Navigational and Memory Function.
    Sanders H; Rennó-Costa C; Idiart M; Lisman J
    Trends Neurosci; 2015 Dec; 38(12):763-775. PubMed ID: 26616686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.
    Grossberg S
    Brain Res; 2015 Sep; 1621():270-93. PubMed ID: 25446436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Space, time and learning in the hippocampus: how fine spatial and temporal scales are expanded into population codes for behavioral control.
    Gorchetchnikov A; Grossberg S
    Neural Netw; 2007 Mar; 20(2):182-93. PubMed ID: 17222533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Close but no cigar: Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory.
    Kolarik BS; Baer T; Shahlaie K; Yonelinas AP; Ekstrom AD
    Hippocampus; 2018 Jan; 28(1):31-41. PubMed ID: 28888032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in brain activation related to visuo-spatial memory after real-time fMRI neurofeedback training in healthy elderly and Alzheimer's disease.
    Hohenfeld C; Kuhn H; Müller C; Nellessen N; Ketteler S; Heinecke A; Goebel R; Shah NJ; Schulz JB; Reske M; Reetz K
    Behav Brain Res; 2020 Mar; 381():112435. PubMed ID: 31863845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of aging on slow-wave sleep dynamics and human spatial navigational memory consolidation.
    Varga AW; Ducca EL; Kishi A; Fischer E; Parekh A; Koushyk V; Yau PL; Gumb T; Leibert DP; Wohlleber ME; Burschtin OE; Convit A; Rapoport DM; Osorio RS; Ayappa I
    Neurobiol Aging; 2016 Jun; 42():142-149. PubMed ID: 27143431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial Representations in the Human Brain.
    Herweg NA; Kahana MJ
    Front Hum Neurosci; 2018; 12():297. PubMed ID: 30104966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does aging affect the formation of new topographical memories? Evidence from an extensive spatial training.
    Nemmi F; Boccia M; Guariglia C
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2017 Jan; 24(1):29-44. PubMed ID: 27045346
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.