These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28858780)

  • 1. A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.
    Frohlich H; Claes K; De Wolf C; Van Damme X; Michel A
    IEEE Trans Biomed Eng; 2018 May; 65(5):1133-1139. PubMed ID: 28858780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensor Decomposition of Gait Dynamics in Parkinson's Disease.
    Pham TD; Yan H
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1820-1827. PubMed ID: 29989951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic footprint based locomotion sway assessment in α-synucleinopathic mice using Fast Fourier Transform and Low Pass Filter.
    Timotius IK; Canneva F; Minakaki G; Pasluosta C; Moceri S; Casadei N; Riess O; Winkler J; Klucken J; von Hörsten S; Eskofier B
    J Neurosci Methods; 2018 Feb; 296():1-11. PubMed ID: 29253577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CatWalk XT® is a valid tool for objective assessment of motor function in the acute phase after controlled cortical impact in mice.
    Walter J; Kovalenko O; Younsi A; Grutza M; Unterberg A; Zweckberger K
    Behav Brain Res; 2020 Aug; 392():112680. PubMed ID: 32479852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automated leg tracking of Drosophila neurodegeneration models reveals distinct conserved movement signatures.
    Wu S; Tan KJ; Govindarajan LN; Stewart JC; Gu L; Ho JWH; Katarya M; Wong BH; Tan EK; Li D; Claridge-Chang A; Libedinsky C; Cheng L; Aw SS
    PLoS Biol; 2019 Jun; 17(6):e3000346. PubMed ID: 31246996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined CatWalk Index: an improved method to measure mouse motor function using the automated gait analysis system.
    Crowley ST; Kataoka K; Itaka K
    BMC Res Notes; 2018 Apr; 11(1):263. PubMed ID: 29703265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explaining the differences of gait patterns between high and low-mileage runners with machine learning.
    Xu D; Quan W; Zhou H; Sun D; Baker JS; Gu Y
    Sci Rep; 2022 Feb; 12(1):2981. PubMed ID: 35194121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selecting Clinically Relevant Gait Characteristics for Classification of Early Parkinson's Disease: A Comprehensive Machine Learning Approach.
    Rehman RZU; Del Din S; Guan Y; Yarnall AJ; Shi JQ; Rochester L
    Sci Rep; 2019 Nov; 9(1):17269. PubMed ID: 31754175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting ground contact events for a continuum of gait types: An application of targeted machine learning using principal component analysis.
    Osis ST; Hettinga BA; Ferber R
    Gait Posture; 2016 May; 46():86-90. PubMed ID: 27131183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Gait Recognition Based on Attribute Discovery.
    Chen X; Weng J; Lu W; Xu J; Xin Chen ; Jian Weng ; Wei Lu ; Jiaming Xu ; Weng J; Chen X; Xu J; Lu W
    IEEE Trans Pattern Anal Mach Intell; 2018 Jul; 40(7):1697-1710. PubMed ID: 28708545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive driven gait freezing phase detection and classification for neuro-rehabilitated patients using machine learning algorithms.
    Khamparia A; Gupta D; Maashi M; Mengash HA
    J Neurosci Methods; 2024 Sep; 409():110183. PubMed ID: 38834145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High frequency stimulation of the subthalamic nucleus improves speed of locomotion but impairs forelimb movement in Parkinsonian rats.
    Vlamings R; Visser-Vandewalle V; Koopmans G; Joosten EA; Kozan R; Kaplan S; Steinbusch HW; Temel Y
    Neuroscience; 2007 Sep; 148(3):815-23. PubMed ID: 17706885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying machine learning to gait analysis data for disease identification.
    Joyseeree R; Abou Sabha R; Mueller H
    Stud Health Technol Inform; 2015; 210():850-4. PubMed ID: 25991275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait performance of adolescent mice assessed by the CatWalk XT depends on age, strain and sex and correlates with speed and body weight.
    Pitzer C; Kurpiers B; Eltokhi A
    Sci Rep; 2021 Nov; 11(1):21372. PubMed ID: 34725364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic recognition of gait patterns in human motor disorders using machine learning: A review.
    Figueiredo J; Santos CP; Moreno JC
    Med Eng Phys; 2018 Mar; 53():1-12. PubMed ID: 29373231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated gait analysis in bilateral parkinsonian rats and the role of L-DOPA therapy.
    Westin JE; Janssen ML; Sager TN; Temel Y
    Behav Brain Res; 2012 Jan; 226(2):519-28. PubMed ID: 22008381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of a manual walking platform and the CatWalk gait analysis system in a rat osteoarthritis model.
    Kara H; Çağlar C; Asiltürk M; Karahan S; Uğurlu M
    Adv Clin Exp Med; 2021 Sep; 30(9):949-956. PubMed ID: 34387414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of Parkinson's Disease Gait Using Spatial-Temporal Gait Features.
    Wahid F; Begg RK; Hass CJ; Halgamuge S; Ackland DC
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1794-802. PubMed ID: 26551989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trendelenburg-Like Gait, Instability and Altered Step Patterns in a Mouse Model for Limb Girdle Muscular Dystrophy 2i.
    Maricelli JW; Lu QL; Lin DC; Rodgers BD
    PLoS One; 2016; 11(9):e0161984. PubMed ID: 27627455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms.
    Sharif Bidabadi S; Murray I; Lee GYF; Morris S; Tan T
    Gait Posture; 2019 Jun; 71():234-240. PubMed ID: 31082655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.