These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 28858798)
1. Convergence of Proximal Iteratively Reweighted Nuclear Norm Algorithm for Image Processing. Tao Sun ; Hao Jiang ; Lizhi Cheng IEEE Trans Image Process; 2017 Dec; 26(12):5632-5644. PubMed ID: 28858798 [TBL] [Abstract][Full Text] [Related]
2. On the convergence of nonconvex minimization methods for image recovery. Xiao J; Ng MK; Yang YF IEEE Trans Image Process; 2015 May; 24(5):1587-98. PubMed ID: 25675457 [TBL] [Abstract][Full Text] [Related]
3. Efficient Recovery of Low-Rank Matrix via Double Nonconvex Nonsmooth Rank Minimization. Zhang H; Gong C; Qian J; Zhang B; Xu C; Yang J IEEE Trans Neural Netw Learn Syst; 2019 Oct; 30(10):2916-2925. PubMed ID: 30892254 [TBL] [Abstract][Full Text] [Related]
4. Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm. Lu C; Tang J; Yan S; Lin Z IEEE Trans Image Process; 2016 Feb; 25(2):829-39. PubMed ID: 26841392 [TBL] [Abstract][Full Text] [Related]
5. Inertial proximal alternating minimization for nonconvex and nonsmooth problems. Zhang Y; He S J Inequal Appl; 2017; 2017(1):232. PubMed ID: 29026279 [TBL] [Abstract][Full Text] [Related]
6. A Nonconvex Relaxation Approach to Low-Rank Tensor Completion. Zhang X IEEE Trans Neural Netw Learn Syst; 2019 Jun; 30(6):1659-1671. PubMed ID: 30346292 [TBL] [Abstract][Full Text] [Related]
7. Inertial Nonconvex Alternating Minimizations for the Image Deblurring. Sun T; Barrio R; Rodriguez M; Jiang H IEEE Trans Image Process; 2019 Dec; 28(12):6211-6224. PubMed ID: 31265396 [TBL] [Abstract][Full Text] [Related]
9. Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares. Zhang C; Zhang T; Li M; Peng C; Liu Z; Zheng J Biomed Eng Online; 2016 Jun; 15(1):66. PubMed ID: 27316680 [TBL] [Abstract][Full Text] [Related]
10. Generalized Nonconvex Approach for Low-Tubal-Rank Tensor Recovery. Wang H; Zhang F; Wang J; Huang T; Huang J; Liu X IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3305-3319. PubMed ID: 33513116 [TBL] [Abstract][Full Text] [Related]
11. A second-order dynamical approach with variable damping to nonconvex smooth minimization. Boţ RI; Csetnek ER; László SC Appl Anal; 2020; 99(3):361-378. PubMed ID: 32256253 [TBL] [Abstract][Full Text] [Related]
12. Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations. Zhang H; Qian J; Gao J; Yang J; Xu C IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2825-2839. PubMed ID: 30668503 [TBL] [Abstract][Full Text] [Related]
13. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization. Lu C; Lin Z; Yan S IEEE Trans Image Process; 2015 Feb; 24(2):646-54. PubMed ID: 25531948 [TBL] [Abstract][Full Text] [Related]
14. Low-Rank Matrix Recovery via Modified Schatten-p Norm Minimization with Convergence Guarantees. Zhang H; Qian J; Zhang B; Yang J; Gong C; Wei Y IEEE Trans Image Process; 2019 Dec; ():. PubMed ID: 31831418 [TBL] [Abstract][Full Text] [Related]
15. A Truncated Nuclear Norm Regularization Method Based on Weighted Residual Error for Matrix Completion. Qing Liu ; Zhihui Lai ; Zongwei Zhou ; Fangjun Kuang ; Zhong Jin IEEE Trans Image Process; 2016 Jan; 25(1):316-30. PubMed ID: 26625414 [TBL] [Abstract][Full Text] [Related]
16. A general double-proximal gradient algorithm for d.c. programming. Banert S; Boț RI Math Program; 2019; 178(1):301-326. PubMed ID: 31762494 [TBL] [Abstract][Full Text] [Related]
17. Non-Lipschitz lp-regularization and box constrained model for image restoration. Chen X; Ng MK; Zhang C IEEE Trans Image Process; 2012 Dec; 21(12):4709-21. PubMed ID: 23008251 [TBL] [Abstract][Full Text] [Related]
18. Generalized Nonconvex Nonsmooth Low-Rank Matrix Recovery Framework With Feasible Algorithm Designs and Convergence Analysis. Zhang H; Qian F; Shi P; Du W; Tang Y; Qian J; Gong C; Yang J IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5342-5353. PubMed ID: 35737613 [TBL] [Abstract][Full Text] [Related]
19. A Modified BFGS Formula Using a Trust Region Model for Nonsmooth Convex Minimizations. Cui Z; Yuan G; Sheng Z; Liu W; Wang X; Duan X PLoS One; 2015; 10(10):e0140606. PubMed ID: 26501775 [TBL] [Abstract][Full Text] [Related]
20. Neural network for a class of sparse optimization with L Wei Z; Li Q; Wei J; Bian W Neural Netw; 2022 Jul; 151():211-221. PubMed ID: 35439665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]