BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28859100)

  • 1. Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action.
    Asemoloye MD; Ahmad R; Jonathan SG
    PLoS One; 2017; 12(8):e0183373. PubMed ID: 28859100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil.
    Asemoloye MD; Ahmad R; Jonathan SG
    Chemosphere; 2017 Nov; 187():1-10. PubMed ID: 28787637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of 2, 2-Dichlorovinyl dimethyl phosphate (dichlorvos) through the rhizosphere interaction between Panicum maximum Jacq and some selected fungi.
    Asemoloye MD; Jonathan SG; Ahmad R
    Chemosphere; 2019 Apr; 221():403-411. PubMed ID: 30648645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains.
    Asemoloye MD; Ahmad R; Jonathan SG
    Environ Pollut; 2018 Apr; 235():55-64. PubMed ID: 29274538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizospheric Microbacterium sp. P27 Showing Potential of Lindane Degradation and Plant Growth Promoting Traits.
    Singh T; Singh DK
    Curr Microbiol; 2019 Jul; 76(7):888-895. PubMed ID: 31093691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.
    Phillips TM; Seech AG; Lee H; Trevors JT
    Biodegradation; 2005 Aug; 16(4):363-92. PubMed ID: 15865341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal variation of HCH isomers in open soil and plant-rhizospheric soil system of a contaminated environment.
    Abhilash PC; Singh N
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):727-40. PubMed ID: 19396485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the kinetics and pathway of lindane biodegradation by novel soil ascomycete fungi for its implication in bioremediation.
    Kaur I; Kumar Gaur V; Rishi S; Anand V; Kumar Mishra S; Gaur R; Patel A; Srivastava S; Verma PC; Kumar Srivastava P
    Bioresour Technol; 2023 Nov; 387():129581. PubMed ID: 37517709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced degradation of hexachlorocyclohexane isomers in rhizosphere soil of Kochia sp.
    Singh N
    Bull Environ Contam Toxicol; 2003 Apr; 70(4):775-82. PubMed ID: 12677390
    [No Abstract]   [Full Text] [Related]  

  • 10. Interaction between lindane and micorbes in soils.
    Tu CM
    Arch Microbiol; 1975 Oct; 105(2):131-4. PubMed ID: 54153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial degradation of the pesticide lindane (gamma-hexachlorocyclohexane).
    Singh BK; Kuhad RC; Singh A; Tripathi KK; Ghosh PK
    Adv Appl Microbiol; 2000; 47():269-98. PubMed ID: 12876800
    [No Abstract]   [Full Text] [Related]  

  • 12. Utilization and degradation of lindane by soil microorganisms.
    Tu CM
    Arch Microbiol; 1976 Jul; 108(3):259-63. PubMed ID: 60090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhizoremediation of lindane by root-colonizing Sphingomonas.
    Böltner D; Godoy P; Muñoz-Rojas J; Duque E; Moreno-Morillas S; Sánchez L; Ramos JL
    Microb Biotechnol; 2008 Jan; 1(1):87-93. PubMed ID: 21261825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.
    Cébron A; Beguiristain T; Bongoua-Devisme J; Denonfoux J; Faure P; Lorgeoux C; Ouvrard S; Parisot N; Peyret P; Leyval C
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13724-38. PubMed ID: 25616383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of root-associated microbiomes of typical rice cultivars in response to lindane pollution.
    Feng J; Xu Y; Ma B; Tang C; Brookes PC; He Y; Xu J
    Environ Int; 2019 Oct; 131():104975. PubMed ID: 31284116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the potential of Meyerozyma caribbica and its combined application with bacteria for lindane bioremediation.
    Roy A; Dubey P; Srivastava A; Kaur I; Shrivastava A; Vajpayee P; Srivastava S; Srivastava PK
    Chemosphere; 2024 Aug; 361():142413. PubMed ID: 38795920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of organochlorine lindane in soils.
    Feng J; Shentu J; Zhu Y; Tang C; He Y; Xu J
    Environ Pollut; 2020 Feb; 257():113580. PubMed ID: 31753626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits.
    Sahoo B; Ningthoujam R; Chaudhuri S
    Int Microbiol; 2019 Mar; 22(1):155-167. PubMed ID: 30810939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway.
    Laquitaine L; Durimel A; de Alencastro LF; Jean-Marius C; Gros O; Gaspard S
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):120-7. PubMed ID: 26686518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation.
    Simón Solá MZ; Lovaisa N; Dávila Costa JS; Benimeli CS; Polti MA; Alvarez A
    Chemosphere; 2019 May; 222():679-687. PubMed ID: 30735968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.