BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 28859268)

  • 1. Development and trial of vaccines against
    Lalsiamthara J; Lee JH
    J Vet Sci; 2017 Aug; 18(S1):281-290. PubMed ID: 28859268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research progress in live attenuated Brucella vaccine development.
    Wang Z; Wu Q
    Curr Pharm Biotechnol; 2013; 14(10):887-96. PubMed ID: 24372253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The advances in brucellosis vaccines.
    Hou H; Liu X; Peng Q
    Vaccine; 2019 Jul; 37(30):3981-3988. PubMed ID: 31176541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rough vaccines in animal brucellosis: structural and genetic basis and present status.
    Moriyón I; Grilló MJ; Monreal D; González D; Marín C; López-Goñi I; Mainar-Jaime RC; Moreno E; Blasco JM
    Vet Res; 2004; 35(1):1-38. PubMed ID: 15099501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Booster vaccination with safe, modified, live-attenuated mutants of Brucella abortus strain RB51 vaccine confers protective immunity against virulent strains of B. abortus and Brucella canis in BALB/c mice.
    Truong QL; Cho Y; Kim K; Park BK; Hahn TW
    Microbiology (Reading); 2015 Nov; 161(11):2137-48. PubMed ID: 26341622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brucellosis: Improved Diagnostics and Vaccine Insights from Synthetic Glycans.
    Bundle DR; McGiven J
    Acc Chem Res; 2017 Dec; 50(12):2958-2967. PubMed ID: 29219305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increases of efficacy as vaccine against Brucella abortus infection in mice by simultaneous inoculation with avirulent smooth bvrS/bvrR and rough wbkA mutants.
    Grilló MJ; Manterola L; de Miguel MJ; Muñoz PM; Blasco JM; Moriyón I; López-Goñi I
    Vaccine; 2006 Apr; 24(15):2910-6. PubMed ID: 16439039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a Brucella vaccine for humans.
    Perkins SD; Smither SJ; Atkins HS
    FEMS Microbiol Rev; 2010 May; 34(3):379-94. PubMed ID: 20180858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates.
    Todd TE; Tibi O; Lin Y; Sayers S; Bronner DN; Xiang Z; He Y
    BMC Bioinformatics; 2013; 14 Suppl 6(Suppl 6):S3. PubMed ID: 23735014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brucellosis vaccines based on the open reading frames from genomic island 3 of Brucella abortus.
    Gómez L; Alvarez F; Betancur D; Oñate A
    Vaccine; 2018 May; 36(21):2928-2936. PubMed ID: 29685597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipopolysaccharide as a target for brucellosis vaccine design.
    Conde-Álvarez R; Arce-Gorvel V; Gil-Ramírez Y; Iriarte M; Grilló MJ; Gorvel JP; Moriyón I
    Microb Pathog; 2013 May; 58():29-34. PubMed ID: 23219811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-Analysis and Advancement of Brucellosis Vaccinology.
    Carvalho TF; Haddad JP; Paixão TA; Santos RL
    PLoS One; 2016; 11(11):e0166582. PubMed ID: 27846274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans.
    Ko J; Splitter GA
    Clin Microbiol Rev; 2003 Jan; 16(1):65-78. PubMed ID: 12525425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brucella abortus 2308ΔNodVΔNodW double-mutant is highly attenuated and confers protection against wild-type challenge in BALB/c mice.
    Li Z; Wang S; Zhang J; Yang G; Yuan B; Huang J; Han J; Xi L; Xiao Y; Chen C; Zhang H
    Microb Pathog; 2017 May; 106():30-39. PubMed ID: 28131952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of three decades of use of the cattle brucellosis rough vaccine Brucella abortus RB51: myths and facts.
    Blasco JM; Moreno E; Muñoz PM; Conde-Álvarez R; Moriyón I
    BMC Vet Res; 2023 Oct; 19(1):211. PubMed ID: 37853407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection of BALB/c mice against homologous and heterologous species of Brucella by rough strain vaccines derived from Brucella melitensis and Brucella suis biovar 4.
    Winter AJ; Schurig GG; Boyle SM; Sriranganathan N; Bevins JS; Enright FM; Elzer PH; Kopec JD
    Am J Vet Res; 1996 May; 57(5):677-83. PubMed ID: 8723881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunogenic and protective antigens of Brucella as vaccine candidates.
    Masjedian Jezi F; Razavi S; Mirnejad R; Zamani K
    Comp Immunol Microbiol Infect Dis; 2019 Aug; 65():29-36. PubMed ID: 31300122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended safety and efficacy studies of the attenuated Brucella vaccine candidates 16 M(Delta)vjbR and S19(Delta)vjbR in the immunocompromised IRF-1-/- mouse model.
    Arenas-Gamboa AM; Rice-Ficht AC; Fan Y; Kahl-McDonagh MM; Ficht TA
    Clin Vaccine Immunol; 2012 Feb; 19(2):249-60. PubMed ID: 22169089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting resident memory T cell immunity culminates in pulmonary and systemic protection against Brucella infection.
    Wang H; Hoffman C; Yang X; Clapp B; Pascual DW
    PLoS Pathog; 2020 Jan; 16(1):e1008176. PubMed ID: 31951645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Brucella abortus S19 vaccines commercialized in Brazil: immunogenicity, residual virulence and MLVA15 genotyping.
    Miranda KL; Poester FP; Minharro S; Dorneles EM; Stynen AP; Lage AP
    Vaccine; 2013 Jun; 31(29):3014-8. PubMed ID: 23664986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.