These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28859313)

  • 1. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes.
    Oremland RS; Saltikov CW; Stolz JF; Hollibaugh JT
    FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.
    Hamamura N; Itai T; Liu Y; Reysenbach AL; Damdinsuren N; Inskeep WP
    Environ Microbiol Rep; 2014 Oct; 6(5):476-82. PubMed ID: 25646538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microbial arsenic cycle in Mono Lake, California.
    Oremland RS; Stolz JF; Hollibaugh JT
    FEMS Microbiol Ecol; 2004 Apr; 48(1):15-27. PubMed ID: 19712427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haloarchaea from the Andean Puna: Biological Role in the Energy Metabolism of Arsenic.
    Ordoñez OF; Rasuk MC; Soria MN; Contreras M; Farías ME
    Microb Ecol; 2018 Oct; 76(3):695-705. PubMed ID: 29520450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases.
    Zargar K; Conrad A; Bernick DL; Lowe TM; Stolc V; Hoeft S; Oremland RS; Stolz J; Saltikov CW
    Environ Microbiol; 2012 Jul; 14(7):1635-45. PubMed ID: 22404962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new aerobic chemolithoautotrophic arsenic oxidizing microorganism isolated from a high Andean watershed.
    Anguita JM; Rojas C; Pastén PA; Vargas IT
    Biodegradation; 2018 Feb; 29(1):59-69. PubMed ID: 29143902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea.
    Rascovan N; Maldonado J; Vazquez MP; Eugenia Farías M
    ISME J; 2016 Feb; 10(2):299-309. PubMed ID: 26140530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review.
    Kumari N; Jagadevan S
    Chemosphere; 2016 Nov; 163():400-412. PubMed ID: 27565307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metatranscriptomic analysis of prokaryotic communities active in sulfur and arsenic cycling in Mono Lake, California, USA.
    Edwardson CF; Hollibaugh JT
    ISME J; 2017 Oct; 11(10):2195-2208. PubMed ID: 28548659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ecology of arsenic.
    Oremland RS; Stolz JF
    Science; 2003 May; 300(5621):939-44. PubMed ID: 12738852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis.
    Handley KM; Héry M; Lloyd JR
    Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Analysis of Two
    Ahn AC; Cavalca L; Colombo M; Schuurmans JM; Sorokin DY; Muyzer G
    Front Microbiol; 2019; 10():1514. PubMed ID: 31333619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting arsenic biogeochemical cycling in two Moroccan alkaline pit lakes.
    Héry M; Desoeuvre A; Benyassine EM; Bruneel O; Delpoux S; Resongles E; Dekayir A; Casiot C
    Res Microbiol; 2020; 171(1):28-36. PubMed ID: 31678563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones.
    Saunders JK; Fuchsman CA; McKay C; Rocap G
    Proc Natl Acad Sci U S A; 2019 May; 116(20):9925-9930. PubMed ID: 31036654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California.
    Kulp TR; Hoeft SE; Miller LG; Saltikov C; Murphy JN; Han S; Lanoil B; Oremland RS
    Appl Environ Microbiol; 2006 Oct; 72(10):6514-26. PubMed ID: 17021200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan.
    Das S; Liu CC; Jean JS; Liu T
    Microb Ecol; 2016 Feb; 71(2):365-74. PubMed ID: 26219267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of arsenic-metabolizing bacteria in an alkaline soil.
    Zhang M; Lu G; Xiao T; Xiao E; Sun X; Yan W; Liu G; Wang Q; Yan G; Liu H; Sun W
    Environ Pollut; 2022 Nov; 312():120040. PubMed ID: 36030950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine.
    Zeng XC; E G; Wang J; Wang N; Chen X; Mu Y; Li H; Yang Y; Liu Y; Wang Y
    Appl Environ Microbiol; 2016 Dec; 82(24):7019-7029. PubMed ID: 27663031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.