These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation. Scott GR; Elogio TS; Lui MA; Storz JF; Cheviron ZA Mol Biol Evol; 2015 Aug; 32(8):1962-76. PubMed ID: 25851956 [TBL] [Abstract][Full Text] [Related]
8. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089 [TBL] [Abstract][Full Text] [Related]
9. Highland deer mice support increased thermogenesis in response to chronic cold hypoxia by shifting uptake of circulating fatty acids from muscles to brown adipose tissue. Lyons SA; McClelland GB J Exp Biol; 2024 Apr; 227(7):. PubMed ID: 38506250 [TBL] [Abstract][Full Text] [Related]
10. Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus). Van Sant MJ; Hammond KA Physiol Biochem Zool; 2008; 81(5):605-11. PubMed ID: 18729765 [TBL] [Abstract][Full Text] [Related]
11. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. Lui MA; Mahalingam S; Patel P; Connaty AD; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(9):R779-91. PubMed ID: 25695288 [TBL] [Abstract][Full Text] [Related]
12. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice. Cheviron ZA; Bachman GC; Storz JF J Exp Biol; 2013 Apr; 216(Pt 7):1160-6. PubMed ID: 23197099 [TBL] [Abstract][Full Text] [Related]
13. Metabolic recovery from submaximal exercise in hypoxia acclimated high altitude deer mice (Peromyscus maniculatus). Dessureault LM; Tod RA; McClelland GB Comp Biochem Physiol B Biochem Mol Biol; 2024; 274():111004. PubMed ID: 38945522 [TBL] [Abstract][Full Text] [Related]
15. Evolved changes in phenotype across skeletal muscles in deer mice native to high altitude. Garrett EJ; Prasad SK; Schweizer RM; McClelland GB; Scott GR Am J Physiol Regul Integr Comp Physiol; 2024 Apr; 326(4):R297-R310. PubMed ID: 38372126 [TBL] [Abstract][Full Text] [Related]
16. Increased Reliance on Carbohydrates for Aerobic Exercise in Highland Andean Leaf-Eared Mice, but Not in Highland Lima Leaf-Eared Mice. Schippers MP; Ramirez O; Arana M; McClelland GB Metabolites; 2021 Oct; 11(11):. PubMed ID: 34822408 [TBL] [Abstract][Full Text] [Related]
17. Coordinated changes across the O Tate KB; Wearing OH; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR Proc Biol Sci; 2020 May; 287(1927):20192750. PubMed ID: 32429808 [TBL] [Abstract][Full Text] [Related]
18. Skeletal muscle metabolism in sea-acclimatized king penguins. I. Thermogenic mechanisms. Roussel D; Le Coadic M; Rouanet JL; Duchamp C J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 32968000 [TBL] [Abstract][Full Text] [Related]
19. Phenotypic plasticity to chronic cold exposure in two species of Peromyscus from different environments. Hayward L; Robertson CE; McClelland GB J Comp Physiol B; 2022 Mar; 192(2):335-348. PubMed ID: 34988665 [TBL] [Abstract][Full Text] [Related]
20. Function of left ventricle mitochondria in highland deer mice and lowland mice. Mahalingam S; Coulson SZ; Scott GR; McClelland GB J Comp Physiol B; 2023 Mar; 193(2):207-217. PubMed ID: 36795175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]