BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 28859833)

  • 21. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Applying graphics processing unit in real-time signal processing and visualization of ophthalmic Fourier-domain OCT system].
    Liu Q; Li Y; Xu Q; Zhao J; Wang L; Gao Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Jan; 37(1):1-5. PubMed ID: 23668032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acceleration of Monte Carlo simulation of photon migration in complex heterogeneous media using Intel many-integrated core architecture.
    Gorshkov AV; Kirillin MY
    J Biomed Opt; 2015 Aug; 20(8):85002. PubMed ID: 26249663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics.
    Doronin A; Meglinski I
    J Biomed Opt; 2012 Sep; 17(9):90504-1. PubMed ID: 23085901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).
    Yang O; Choi B
    Biomed Opt Express; 2013; 4(11):2667-72. PubMed ID: 24298424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
    Cui JY; Pratx G; Prevrhal S; Levin CS
    Med Phys; 2011 Dec; 38(12):6775-86. PubMed ID: 22149859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monte Carlo study of coherent diffuse photon transport in a homogeneous turbid medium: a degree-of-coherence based approach.
    Moon S; Kim D; Sim E
    Appl Opt; 2008 Jan; 47(3):336-45. PubMed ID: 18204720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms.
    Yu L; Nina-Paravecino F; Kaeli D; Fang Q
    J Biomed Opt; 2018 Jan; 23(1):1-4. PubMed ID: 29374404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast calculation of multipath diffusive reflectance in optical coherence tomography.
    Lima IT; Kalra A; Hernández-Figueroa HE; Sherif SS
    Biomed Opt Express; 2012 Apr; 3(4):692-700. PubMed ID: 22574258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate Monte Carlo simulation of frequency-domain optical coherence tomography.
    Wang Y; Bai L
    Int J Numer Method Biomed Eng; 2019 Apr; 35(4):e3177. PubMed ID: 30690893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Next-generation acceleration and code optimization for light transport in turbid media using GPUs.
    Alerstam E; Lo WC; Han TD; Rose J; Andersson-Engels S; Lilge L
    Biomed Opt Express; 2010 Sep; 1(2):658-75. PubMed ID: 21258498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
    Jia X; Gu X; Graves YJ; Folkerts M; Jiang SB
    Phys Med Biol; 2011 Nov; 56(22):7017-31. PubMed ID: 22016026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution of the direct problem in turbid media with inclusions using Monte Carlo simulations implemented in graphics processing units: new criterion for processing transmittance data.
    Carbone N; Di Rocco H; Iriarte DI; Pomarico JA
    J Biomed Opt; 2010; 15(3):035002. PubMed ID: 20615002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J; Bloch P; Xu J; Sarunic MV; Shannon L
    Appl Opt; 2011 May; 50(13):1832-8. PubMed ID: 21532660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance sampling-based Monte Carlo simulation of time-domain optical coherence tomography with embedded objects.
    Periyasamy V; Pramanik M
    Appl Opt; 2016 Apr; 55(11):2921-9. PubMed ID: 27139855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
    Jahnke L; Fleckenstein J; Wenz F; Hesser J
    Phys Med Biol; 2012 Mar; 57(5):1217-29. PubMed ID: 22330587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origin of improved depth penetration in dual-axis optical coherence tomography: a Monte Carlo study.
    Zhao Y; Chu KK; Jelly ET; Wax A
    J Biophotonics; 2019 Jun; 12(6):e201800383. PubMed ID: 30701684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation.
    Smithies DJ; Lindmo T; Chen Z; Nelson JS; Milner TE
    Phys Med Biol; 1998 Oct; 43(10):3025-44. PubMed ID: 9814533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media.
    Sassaroli A
    Opt Lett; 2011 Jun; 36(11):2095-7. PubMed ID: 21633460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.