BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 28859833)

  • 41. hybridMANTIS: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators.
    Sharma D; Badal A; Badano A
    Phys Med Biol; 2012 Apr; 57(8):2357-72. PubMed ID: 22469917
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GPU-based optical propagation simulator of a laser-processed crystal block for the X'tal cube PET detector.
    Ogata Y; Ohnishi T; Moriya T; Inadama N; Nishikido F; Yoshida E; Murayama H; Yamaya T; Haneishi H
    Radiol Phys Technol; 2014 Jan; 7(1):35-42. PubMed ID: 23896989
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media.
    Powell S; Leung TS
    J Biomed Opt; 2012 Apr; 17(4):045002. PubMed ID: 22559676
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation --- Part I: Core algorithm and validation.
    Tsai MY; Tian Z; Qin N; Yan C; Lai Y; Hung SH; Chi Y; Jia X
    Med Phys; 2020 Apr; 47(4):1958-1970. PubMed ID: 31971258
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media.
    Deng X; Wang X; Liu H; Zhuang Z; Guo Z
    J Biomed Opt; 2006; 11(2):024013. PubMed ID: 16674203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of layers in optical coherence tomography of skin: comparative analysis of experimental and Monte Carlo simulated images.
    Shlivko IL; Kirillin MY; Donchenko EV; Ellinsky DO; Garanina OE; Neznakhina MS; Agrba PD; Kamensky VA
    Skin Res Technol; 2015 Nov; 21(4):419-25. PubMed ID: 25594488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selection of voxel size and photon number in voxel-based Monte Carlo method: criteria and applications.
    Li D; Chen B; Ran WY; Wang GX; Wu WJ
    J Biomed Opt; 2015; 20(9):095014. PubMed ID: 26417866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration.
    Alerstam E; Svensson T; Andersson-Engels S
    J Biomed Opt; 2008; 13(6):060504. PubMed ID: 19123645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional Neumann-series approach to model light transport in nonuniform media.
    Jha AK; Kupinski MA; Barrett HH; Clarkson E; Hartman JH
    J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1885-99. PubMed ID: 23201945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues.
    Peng K; Gao X; Qu X; Ren N; Chen X; He X; Wang X; Liang J; Tian J
    Appl Opt; 2011 Jul; 50(21):3808-23. PubMed ID: 21772362
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of single Monte Carlo methods for prediction of reflectance from turbid media.
    Martinelli M; Gardner A; Cuccia D; Hayakawa C; Spanier J; Venugopalan V
    Opt Express; 2011 Sep; 19(20):19627-42. PubMed ID: 21996904
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 53. FullMonteCUDA: a fast, flexible, and accurate GPU-accelerated Monte Carlo simulator for light propagation in turbid media.
    Young-Schultz T; Brown S; Lilge L; Betz V
    Biomed Opt Express; 2019 Sep; 10(9):4711-4726. PubMed ID: 31565520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Propagation of polarized light in birefringent turbid media: a Monte Carlo study.
    Wang X; Wang LV
    J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Graphics processing unit-accelerated mesh-based Monte Carlo photon transport simulations.
    Fang Q; Yan S
    J Biomed Opt; 2019 Nov; 24(11):1-6. PubMed ID: 31746154
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative image contrast enhancement in time-gated transillumination of scattering media.
    Sedarsky D; Berrocal E; Linne M
    Opt Express; 2011 Jan; 19(3):1866-83. PubMed ID: 21369002
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Geant4-based Monte Carlo simulations on GPU for medical applications.
    Bert J; Perez-Ponce H; El Bitar Z; Jan S; Boursier Y; Vintache D; Bonissent A; Morel C; Brasse D; Visvikis D
    Phys Med Biol; 2013 Aug; 58(16):5593-611. PubMed ID: 23892709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-resolved subtraction method for measuring optical properties of turbid media.
    Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K
    Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Decoupled fluorescence Monte Carlo model for direct computation of fluorescence in turbid media.
    Luo Z; Deng Y; Wang K; Lian L; Yang X; Luo Q
    J Biomed Opt; 2015 Feb; 20(2):25002. PubMed ID: 25649626
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.