These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28860084)

  • 1. High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in the root rot pathogen Armillaria ostoyae.
    Heinzelmann R; Croll D; Zoller S; Sipos G; Münsterkötter M; Güldener U; Rigling D
    Fungal Genet Biol; 2017 Nov; 108():44-54. PubMed ID: 28860084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic structure of an expanding Armillaria root rot fungus (Armillaria ostoyae) population in a managed pine forest in southwestern France.
    Prospero S; Lung-Escarmant B; Dutech C
    Mol Ecol; 2008 Jul; 17(14):3366-78. PubMed ID: 18564091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests.
    Bendel M; Kienast F; Rigling D
    Mycol Res; 2006 Jun; 110(Pt 6):705-12. PubMed ID: 16616839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis reveals efficient sexual spore dispersal at a fine spatial scale in Armillaria ostoyae, the causal agent of root-rot disease in conifers.
    Dutech C; Labbé F; Capdevielle X; Lung-Escarmant B
    Fungal Biol; 2017; 121(6-7):550-560. PubMed ID: 28606350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual RNA-Seq Profiling Unveils Mycoparasitic Activities of
    Chen L; Champramary S; Sahu N; Indic B; Szűcs A; Nagy G; Maróti G; Pap B; Languar O; Vágvölgyi C; Nagy LG; Kredics L; Sipos G
    Microbiol Spectr; 2023 Jun; 11(3):e0462622. PubMed ID: 37140425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal assembly and analyses of genome-wide recombination rates in the forest pathogenic fungus Armillaria ostoyae.
    Heinzelmann R; Rigling D; Sipos G; Münsterkötter M; Croll D
    Heredity (Edinb); 2020 Jun; 124(6):699-713. PubMed ID: 32203246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici.
    Lendenmann MH; Croll D; Palma-Guerrero J; Stewart EL; McDonald BA
    Heredity (Edinb); 2016 Apr; 116(4):384-94. PubMed ID: 26758189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomewide mutation dynamic within a long-lived individual of Armillaria gallica.
    Anderson JB; Catona S
    Mycologia; 2014; 106(4):642-8. PubMed ID: 24891414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative trait locus mapping of melanization in the plant pathogenic fungus Zymoseptoria tritici.
    Lendenmann MH; Croll D; Stewart EL; McDonald BA
    G3 (Bethesda); 2014 Oct; 4(12):2519-33. PubMed ID: 25360032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.).
    Zhang Z; Shang H; Shi Y; Huang L; Li J; Ge Q; Gong J; Liu A; Chen T; Wang D; Wang Y; Palanga KK; Muhammad J; Li W; Lu Q; Deng X; Tan Y; Song W; Cai J; Li P; Rashid Ho; Gong W; Yuan Y
    BMC Plant Biol; 2016 Apr; 16():79. PubMed ID: 27067834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria.
    Sipos G; Prasanna AN; Walter MC; O'Connor E; Bálint B; Krizsán K; Kiss B; Hess J; Varga T; Slot J; Riley R; Bóka B; Rigling D; Barry K; Lee J; Mihaltcheva S; LaButti K; Lipzen A; Waldron R; Moloney NM; Sperisen C; Kredics L; Vágvölgyi C; Patrignani A; Fitzpatrick D; Nagy I; Doyle S; Anderson JB; Grigoriev IV; Güldener U; Münsterkötter M; Nagy LG
    Nat Ecol Evol; 2017 Dec; 1(12):1931-1941. PubMed ID: 29085064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of growth, morphology and pathogenicity in the F(1) progeny of an interspecific cross between Fusarium circinatum and Fusarium subglutinans.
    De Vos L; van der Nest MA; van der Merwe NA; Myburg AA; Wingfield MJ; Wingfield BD
    Fungal Biol; 2011 Sep; 115(9):902-8. PubMed ID: 21872187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.).
    Ogundiwin EA; Berke TF; Massoudi M; Black LL; Huestis G; Choi D; Lee S; Prince JP
    Genome; 2005 Aug; 48(4):698-711. PubMed ID: 16094437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Armillaria root rot fungi host single-stranded RNA viruses.
    Linnakoski R; Sutela S; Coetzee MPA; Duong TA; Pavlov IN; Litovka YA; Hantula J; Wingfield BD; Vainio EJ
    Sci Rep; 2021 Apr; 11(1):7336. PubMed ID: 33795735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequent diploidisation of haploid Armillaria ostoyae strains in an outdoor inoculation experiment.
    Heinzelmann R; Prospero S; Rigling D
    Fungal Biol; 2018; 122(2-3):147-155. PubMed ID: 29458718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative metabolomics implicates threitol as a fungal signal supporting colonization of Armillaria luteobubalina on eucalypt roots.
    Wong JW; Plett KL; Natera SHA; Roessner U; Anderson IC; Plett JM
    Plant Cell Environ; 2020 Feb; 43(2):374-386. PubMed ID: 31797388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associations Between Armillaria Species and Host Plants in U.K. Gardens.
    Drakulic J; Gorton C; Perez-Sierra A; Clover G; Beal L
    Plant Dis; 2017 Nov; 101(11):1903-1909. PubMed ID: 30677312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Comparisons of Two Armillaria Species with Different Ecological Behaviors and Their Associated Soil Microbial Communities.
    Caballero JRI; Lalande BM; Hanna JW; Klopfenstein NB; Kim MS; Stewart JE
    Microb Ecol; 2023 Feb; 85(2):708-729. PubMed ID: 35312808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo sequencing, assembly and functional annotation of Armillaria borealis genome.
    Akulova VS; Sharov VV; Aksyonova AI; Putintseva YA; Oreshkova NV; Feranchuk SI; Kuzmin DA; Pavlov IN; Litovka YA; Krutovsky KV
    BMC Genomics; 2020 Sep; 21(Suppl 7):534. PubMed ID: 32912216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virulence and Stump Colonization Ability of Armillaria borealis on Norway Spruce Seedlings in Comparison to Sympatric Armillaria Species.
    Heinzelmann R; Prospero S; Rigling D
    Plant Dis; 2017 Mar; 101(3):470-479. PubMed ID: 30677340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.