BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28860084)

  • 1. High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in the root rot pathogen Armillaria ostoyae.
    Heinzelmann R; Croll D; Zoller S; Sipos G; Münsterkötter M; Güldener U; Rigling D
    Fungal Genet Biol; 2017 Nov; 108():44-54. PubMed ID: 28860084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic structure of an expanding Armillaria root rot fungus (Armillaria ostoyae) population in a managed pine forest in southwestern France.
    Prospero S; Lung-Escarmant B; Dutech C
    Mol Ecol; 2008 Jul; 17(14):3366-78. PubMed ID: 18564091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests.
    Bendel M; Kienast F; Rigling D
    Mycol Res; 2006 Jun; 110(Pt 6):705-12. PubMed ID: 16616839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis reveals efficient sexual spore dispersal at a fine spatial scale in Armillaria ostoyae, the causal agent of root-rot disease in conifers.
    Dutech C; Labbé F; Capdevielle X; Lung-Escarmant B
    Fungal Biol; 2017; 121(6-7):550-560. PubMed ID: 28606350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual RNA-Seq Profiling Unveils Mycoparasitic Activities of
    Chen L; Champramary S; Sahu N; Indic B; Szűcs A; Nagy G; Maróti G; Pap B; Languar O; Vágvölgyi C; Nagy LG; Kredics L; Sipos G
    Microbiol Spectr; 2023 Jun; 11(3):e0462622. PubMed ID: 37140425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal assembly and analyses of genome-wide recombination rates in the forest pathogenic fungus Armillaria ostoyae.
    Heinzelmann R; Rigling D; Sipos G; Münsterkötter M; Croll D
    Heredity (Edinb); 2020 Jun; 124(6):699-713. PubMed ID: 32203246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici.
    Lendenmann MH; Croll D; Palma-Guerrero J; Stewart EL; McDonald BA
    Heredity (Edinb); 2016 Apr; 116(4):384-94. PubMed ID: 26758189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomewide mutation dynamic within a long-lived individual of Armillaria gallica.
    Anderson JB; Catona S
    Mycologia; 2014; 106(4):642-8. PubMed ID: 24891414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative trait locus mapping of melanization in the plant pathogenic fungus Zymoseptoria tritici.
    Lendenmann MH; Croll D; Stewart EL; McDonald BA
    G3 (Bethesda); 2014 Oct; 4(12):2519-33. PubMed ID: 25360032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.).
    Zhang Z; Shang H; Shi Y; Huang L; Li J; Ge Q; Gong J; Liu A; Chen T; Wang D; Wang Y; Palanga KK; Muhammad J; Li W; Lu Q; Deng X; Tan Y; Song W; Cai J; Li P; Rashid Ho; Gong W; Yuan Y
    BMC Plant Biol; 2016 Apr; 16():79. PubMed ID: 27067834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria.
    Sipos G; Prasanna AN; Walter MC; O'Connor E; Bálint B; Krizsán K; Kiss B; Hess J; Varga T; Slot J; Riley R; Bóka B; Rigling D; Barry K; Lee J; Mihaltcheva S; LaButti K; Lipzen A; Waldron R; Moloney NM; Sperisen C; Kredics L; Vágvölgyi C; Patrignani A; Fitzpatrick D; Nagy I; Doyle S; Anderson JB; Grigoriev IV; Güldener U; Münsterkötter M; Nagy LG
    Nat Ecol Evol; 2017 Dec; 1(12):1931-1941. PubMed ID: 29085064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of growth, morphology and pathogenicity in the F(1) progeny of an interspecific cross between Fusarium circinatum and Fusarium subglutinans.
    De Vos L; van der Nest MA; van der Merwe NA; Myburg AA; Wingfield MJ; Wingfield BD
    Fungal Biol; 2011 Sep; 115(9):902-8. PubMed ID: 21872187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.).
    Ogundiwin EA; Berke TF; Massoudi M; Black LL; Huestis G; Choi D; Lee S; Prince JP
    Genome; 2005 Aug; 48(4):698-711. PubMed ID: 16094437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Armillaria root rot fungi host single-stranded RNA viruses.
    Linnakoski R; Sutela S; Coetzee MPA; Duong TA; Pavlov IN; Litovka YA; Hantula J; Wingfield BD; Vainio EJ
    Sci Rep; 2021 Apr; 11(1):7336. PubMed ID: 33795735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequent diploidisation of haploid Armillaria ostoyae strains in an outdoor inoculation experiment.
    Heinzelmann R; Prospero S; Rigling D
    Fungal Biol; 2018; 122(2-3):147-155. PubMed ID: 29458718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative metabolomics implicates threitol as a fungal signal supporting colonization of Armillaria luteobubalina on eucalypt roots.
    Wong JW; Plett KL; Natera SHA; Roessner U; Anderson IC; Plett JM
    Plant Cell Environ; 2020 Feb; 43(2):374-386. PubMed ID: 31797388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associations Between Armillaria Species and Host Plants in U.K. Gardens.
    Drakulic J; Gorton C; Perez-Sierra A; Clover G; Beal L
    Plant Dis; 2017 Nov; 101(11):1903-1909. PubMed ID: 30677312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo sequencing, assembly and functional annotation of Armillaria borealis genome.
    Akulova VS; Sharov VV; Aksyonova AI; Putintseva YA; Oreshkova NV; Feranchuk SI; Kuzmin DA; Pavlov IN; Litovka YA; Krutovsky KV
    BMC Genomics; 2020 Sep; 21(Suppl 7):534. PubMed ID: 32912216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic Comparisons of Two Armillaria Species with Different Ecological Behaviors and Their Associated Soil Microbial Communities.
    Caballero JRI; Lalande BM; Hanna JW; Klopfenstein NB; Kim MS; Stewart JE
    Microb Ecol; 2023 Feb; 85(2):708-729. PubMed ID: 35312808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virulence and Stump Colonization Ability of Armillaria borealis on Norway Spruce Seedlings in Comparison to Sympatric Armillaria Species.
    Heinzelmann R; Prospero S; Rigling D
    Plant Dis; 2017 Mar; 101(3):470-479. PubMed ID: 30677340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.