These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

777 related articles for article (PubMed ID: 28860414)

  • 1. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action.
    Hart NH; Nimphius S; Rantalainen T; Ireland A; Siafarikas A; Newton RU
    J Musculoskelet Neuronal Interact; 2017 Sep; 17(3):114-139. PubMed ID: 28860414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is bone's response to mechanical signals dominated by muscle forces?
    Robling AG
    Med Sci Sports Exerc; 2009 Nov; 41(11):2044-9. PubMed ID: 19812512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why bones bend but don't break.
    Burr DB
    J Musculoskelet Neuronal Interact; 2011 Dec; 11(4):270-85. PubMed ID: 22130136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone.
    Lanyon LE
    Bone; 1996 Jan; 18(1 Suppl):37S-43S. PubMed ID: 8717546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen fiber orientation pattern, osteon morphology and distribution, and presence of laminar histology do not distinguish torsion from bending in bat and pigeon wing bones.
    Skedros JG; Doutré MS
    J Anat; 2019 Jun; 234(6):748-763. PubMed ID: 30924933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is bone's response to mechanical signals dominated by gravitational loading?
    Judex S; Carlson KJ
    Med Sci Sports Exerc; 2009 Nov; 41(11):2037-43. PubMed ID: 19812513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musculoskeletal design in relation to body size.
    Biewener AA
    J Biomech; 1991; 24 Suppl 1():19-29. PubMed ID: 1791177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of the muscle-bone relationship.
    Ireland A; Ferretti JL; Rittweger J
    Curr Osteoporos Rep; 2014 Dec; 12(4):486-95. PubMed ID: 25095743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of mechanical signals in bone.
    Judex S; Gupta S; Rubin C
    Orthod Craniofac Res; 2009 May; 12(2):94-104. PubMed ID: 19419452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing bone's adaptive capacity around dental implants: a literature review.
    Greenstein G; Cavallaro J; Tarnow D
    J Am Dent Assoc; 2013 Apr; 144(4):362-8. PubMed ID: 23543690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix.
    Schwiedrzik J; Taylor A; Casari D; Wolfram U; Zysset P; Michler J
    Acta Biomater; 2017 Sep; 60():302-314. PubMed ID: 28754646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cortical bone and its microstructure in bone strength.
    Augat P; Schorlemmer S
    Age Ageing; 2006 Sep; 35 Suppl 2():ii27-ii31. PubMed ID: 16926200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the microscopic and nanoscale structure on bone fragility.
    Ruppel ME; Miller LM; Burr DB
    Osteoporos Int; 2008 Sep; 19(9):1251-65. PubMed ID: 18317862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical effects on the skeleton: are there clinical implications?
    Forwood MR
    Osteoporos Int; 2001; 12(1):77-83. PubMed ID: 11305087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sclerostin's role in bone's adaptive response to mechanical loading.
    Galea GL; Lanyon LE; Price JS
    Bone; 2017 Mar; 96():38-44. PubMed ID: 27742499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.