These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28860477)

  • 41. The Tunable and Efficient Nanoporous CuAg Alloy Catalysts Toward Methanol Oxidation Reaction Synthesized by Electrochemical Dealloying of Metallic Glassy Precursors.
    Yang L; Li H; Han L; Liu S
    Chemistry; 2023 May; 29(26):e202203968. PubMed ID: 36840684
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superparamagnetic plasmonic nanohybrids: shape-controlled synthesis, TEM-induced structure evolution, and efficient sunlight-driven inactivation of bacteria.
    Zhai Y; Han L; Wang P; Li G; Ren W; Liu L; Wang E; Dong S
    ACS Nano; 2011 Nov; 5(11):8562-70. PubMed ID: 21951020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mild Synthesis of Copper Nanoparticles with Enhanced Oxidative Stability and Their Application in Antibacterial Films.
    Tang L; Zhu L; Tang F; Yao C; Wang J; Li L
    Langmuir; 2018 Dec; 34(48):14570-14576. PubMed ID: 30423251
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles.
    Sun HL; Xu MM; Guo QH; Yuan YX; Shen LM; Gu RA; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():579-85. PubMed ID: 23800776
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.
    Chen M; Zhang E; Zhang L
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():350-60. PubMed ID: 26952433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity.
    Wang H; Liu J; Wu X; Tong Z; Deng Z
    Nanotechnology; 2013 May; 24(20):205102. PubMed ID: 23609179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facile Synthesis of Cu/NiCu Electrocatalysts Integrating Alloy, Core-Shell, and One-Dimensional Structures for Efficient Methanol Oxidation Reaction.
    Wu D; Zhang W; Cheng D
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19843-19851. PubMed ID: 28537715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.
    Lee C; Kim NR; Koo J; Lee YJ; Lee HM
    Nanotechnology; 2015 Nov; 26(45):455601. PubMed ID: 26489391
    [TBL] [Abstract][Full Text] [Related]  

  • 49.
    Phan PQ; Chae S; Pornaroontham P; Muta Y; Kim K; Wang X; Saito N
    RSC Adv; 2020 Oct; 10(60):36627-36635. PubMed ID: 35517970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe
    Pham VL; Kim DG; Ko SO
    Sci Total Environ; 2018 Aug; 631-632():608-618. PubMed ID: 29533797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications.
    Singh S; Ashfaq M; Singh RK; Joshi HC; Srivastava A; Sharma A; Verma N
    N Biotechnol; 2013 Sep; 30(6):656-65. PubMed ID: 23692978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic Cu-Ni (core-shell) nanoparticles in a one-pot reaction under microwave irradiation.
    Yamauchi T; Tsukahara Y; Sakata T; Mori H; Yanagida T; Kawai T; Wada Y
    Nanoscale; 2010 Apr; 2(4):515-23. PubMed ID: 20644753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities.
    Wu C; Zhang G; Xia T; Li Z; Zhao K; Deng Z; Guo D; Peng B
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():155-65. PubMed ID: 26117750
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alloying and Embedding of Cu-Core/Ag-Shell Nanowires for Ultrastable Stretchable and Transparent Electrodes.
    Zhang B; Li W; Nogi M; Chen C; Yang Y; Sugahara T; Koga H; Suganuma K
    ACS Appl Mater Interfaces; 2019 May; 11(20):18540-18547. PubMed ID: 31055926
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of fully covered Cu-Ag core-shell nanoparticles by compound method and anti-oxidation performance.
    Huang Y; Wu F; Zhou Z; Zhou L; Liu H
    Nanotechnology; 2020 Apr; 31(17):175601. PubMed ID: 31910401
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance.
    Yang XH; Fu HT; Wong K; Jiang XC; Yu AB
    Nanotechnology; 2013 Oct; 24(41):415601. PubMed ID: 24045164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys.
    Chen M; Yang L; Zhang L; Han Y; Lu Z; Qin G; Zhang E
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():906-917. PubMed ID: 28415546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of silver-containing austenite antibacterial stainless steels for biomedical applications part I: microstructure characteristics, mechanical properties and antibacterial mechanisms.
    Huang CF; Chiang HJ; Lan WC; Chou HH; Ou KL; Yu CH
    Biofouling; 2011 May; 27(5):449-57. PubMed ID: 21598123
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics.
    Ye X; Shi H; He X; Yu Y; He D; Tang J; Lei Y; Wang K
    Nanoscale; 2016 Jan; 8(4):2260-7. PubMed ID: 26743815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts.
    Shao M; Shoemaker K; Peles A; Kaneko K; Protsailo L
    J Am Chem Soc; 2010 Jul; 132(27):9253-5. PubMed ID: 20565078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.