These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28860540)

  • 81. Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach.
    Zarringhalam K; Tay Y; Kulkarni P; Bester AC; Pandolfi PP; Kulkarni RV
    Sci Rep; 2017 Aug; 7(1):7755. PubMed ID: 28798471
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk.
    Smillie CL; Sirey T; Ponting CP
    Crit Rev Biochem Mol Biol; 2018 Jun; 53(3):231-245. PubMed ID: 29569941
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The landscape of miRNA-related ceRNA networks for marking different renal cell carcinoma subtypes.
    Qin L; Liu Y; Li M; Pu X; Guo Y
    Brief Bioinform; 2020 Jan; 21(1):73-84. PubMed ID: 30452527
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Aberrantly expressed long noncoding RNAs in hypertrophic scar fibroblasts in vitro: A microarray study.
    Tu L; Huang Q; Fu S; Liu D
    Int J Mol Med; 2018 Apr; 41(4):1917-1930. PubMed ID: 29393369
    [TBL] [Abstract][Full Text] [Related]  

  • 85. LAceModule: Identification of Competing Endogenous RNA Modules by Integrating Dynamic Correlation.
    Wen X; Gao L; Hu Y
    Front Genet; 2020; 11():235. PubMed ID: 32256525
    [TBL] [Abstract][Full Text] [Related]  

  • 86. CeRNASeek: an R package for identification and analysis of ceRNA regulation.
    Zhang M; Jin X; Li J; Tian Y; Wang Q; Li X; Xu J; Li Y; Li X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32363380
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Modelling Competing Endogenous RNA Networks.
    Bosia C; Pagnani A; Zecchina R
    PLoS One; 2013; 8(6):e66609. PubMed ID: 23840508
    [TBL] [Abstract][Full Text] [Related]  

  • 88. RNA-based regulation: dynamics and response to perturbations of competing RNAs.
    Figliuzzi M; De Martino A; Marinari E
    Biophys J; 2014 Aug; 107(4):1011-22. PubMed ID: 25140437
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Competing Endogenous RNA Regulations in Neurodegenerative Disorders: Current Challenges and Emerging Insights.
    Cai Y; Wan J
    Front Mol Neurosci; 2018; 11():370. PubMed ID: 30344479
    [TBL] [Abstract][Full Text] [Related]  

  • 90. MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory.
    Figliuzzi M; Marinari E; De Martino A
    Biophys J; 2013 Mar; 104(5):1203-13. PubMed ID: 23473503
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Dissecting the Functional Mechanisms of Somatic Copy-Number Alterations Based on Dysregulated ceRNA Networks across Cancers.
    Ping Y; Zhou Y; Hu J; Pang L; Xu C; Xiao Y
    Mol Ther Nucleic Acids; 2020 Sep; 21():464-479. PubMed ID: 32668393
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Network topology reveals key cardiovascular disease genes.
    Sarajlić A; Janjić V; Stojković N; Radak D; Pržulj N
    PLoS One; 2013; 8(8):e71537. PubMed ID: 23977067
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Author Correction: The global view of mRNA-related ceRNA cross-talks across cardiovascular diseases.
    Song C; Zhang J; Qi H; Feng C; Chen Y; Cao Y; Ba L; Ai B; Wang Q; Huang W; Li C; Sun H
    Sci Rep; 2018 Jul; 8(1):11019. PubMed ID: 30018284
    [TBL] [Abstract][Full Text] [Related]  

  • 94. MicroRNA-30 and 145 as Targets for the Treatment of Cardiovascular Diseases: Therapeutic Feasibility and Challenges.
    Tolouei SEL; Curi TZ; Klider LM; Junior AG
    Curr Pharm Des; 2021; 27(37):3858-3870. PubMed ID: 33308116
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A comprehensive multi-omics analysis reveals molecular features associated with cancer via RNA cross-talks in the Notch signaling pathway.
    Guo L; Li S; Yan X; Shen L; Xia D; Xiong Y; Dou Y; Mi L; Ren Y; Xiang Y; Ren D; Wang J; Liang T
    Comput Struct Biotechnol J; 2022; 20():3972-3985. PubMed ID: 35950189
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Survey of network-based approaches to research of cardiovascular diseases.
    Sarajlić A; Pržulj N
    Biomed Res Int; 2014; 2014():527029. PubMed ID: 24772427
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The Role of BPIFB4 in Immune System and Cardiovascular Disease: The Lesson from Centenarians.
    Montella F; Lopardo V; Cattaneo M; Carrizzo A; Vecchione C; Ciaglia E; Puca AA
    Transl Med UniSa; 2021; 24(1):1-12. PubMed ID: 36447743
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The regulatory network architecture of cardiometabolic diseases.
    Schmidt HHHW; Menche J
    Nat Genet; 2022 Jan; 54(1):2-3. PubMed ID: 35022603
    [No Abstract]   [Full Text] [Related]  

  • 99. The landscape of emerging ceRNA crosstalks in colorectal cancer: Systems biological perspectives and translational applications.
    Qi X; Lin Y; Chen J; Shen B
    Clin Transl Med; 2020 Aug; 10(4):e153. PubMed ID: 32898321
    [No Abstract]   [Full Text] [Related]  

  • 100. Department of Therapeutics: Conducted by David Cerna, M. D.
    Cerna D
    Daniels Tex Med J; 1893 Feb; 8(8):310-314. PubMed ID: 36953617
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.