BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28861071)

  • 1. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage.
    Balci N; Brunner B; Turchyn AV
    Front Microbiol; 2017; 8():1564. PubMed ID: 28861071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece.
    Gilhooly WP; Fike DA; Druschel GK; Kafantaris FC; Price RE; Amend JP
    Geochem Trans; 2014; 15():12. PubMed ID: 25183951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.
    Einsiedl F
    Environ Sci Technol; 2009 Jan; 43(1):82-7. PubMed ID: 19209588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates.
    Breuker A; Schippers A
    Res Microbiol; 2024; 175(1-2):104110. PubMed ID: 37544391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport-Induced Spatial Patterns of Sulfur Isotopes (δ
    Mansor M; Harouaka K; Gonzales MS; Macalady JL; Fantle MS
    Astrobiology; 2018 Jan; 18(1):59-72. PubMed ID: 29227145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment.
    Wu S; Jeschke C; Dong R; Paschke H; Kuschk P; Knöller K
    Water Res; 2011 Dec; 45(20):6688-98. PubMed ID: 22055121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20.
    Leavitt WD; Cummins R; Schmidt ML; Sim MS; Ono S; Bradley AS; Johnston DT
    Front Microbiol; 2014; 5():591. PubMed ID: 25505449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Acidithiobacillus Ferrooxidans ATCC 23270 in Thiosulfate Under Oxygen-Limiting Conditions Generates Extracellular Sulfur Globules by Means of a Secreted Tetrathionate Hydrolase.
    Beard S; Paradela A; Albar JP; Jerez CA
    Front Microbiol; 2011; 2():79. PubMed ID: 21833324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
    Rameez MJ; Pyne P; Mandal S; Chatterjee S; Alam M; Bhattacharya S; Mondal N; Sarkar J; Ghosh W
    Microbiol Res; 2020 Jan; 230():126345. PubMed ID: 31585234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3.
    Kupka D; Liljeqvist M; Nurmi P; Puhakka JA; Tuovinen OH; Dopson M
    Res Microbiol; 2009 Dec; 160(10):767-74. PubMed ID: 19782750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs.
    Kamyshny A; Druschel G; Mansaray ZF; Farquhar J
    Geochem Trans; 2014; 15():7. PubMed ID: 24959098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data.
    Killingsworth BA; Bao H; Kohl IE
    Environ Sci Technol; 2018 Jun; 52(11):6126-6136. PubMed ID: 29745225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon‑sulfur coupling in a seasonally hypoxic, high-sulfate reservoir in SW China: Evidence from stable CS isotopes and sulfate-reducing bacteria.
    Yang M; Liu CQ; Li XD; Ding S; Cui G; Teng HH; Lv H; Wang Y; Zhang X; Guan T
    Sci Total Environ; 2022 Jul; 828():154537. PubMed ID: 35292324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant influence of water diversion and anthropogenic input on riverine sulfate based on sulfur and oxygen isotopes.
    Zhang D; Xue T; Xiao J; Chai N; Gong SG
    J Hazard Mater; 2024 Jan; 461():132622. PubMed ID: 37757557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of O
    Houghton JL; Foustoukos DI; Fike DA
    Geobiology; 2019 Sep; 17(5):564-576. PubMed ID: 31180189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Biogeochemical Sulfur Cycle of Marine Sediments.
    Jørgensen BB; Findlay AJ; Pellerin A
    Front Microbiol; 2019; 10():849. PubMed ID: 31105660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution model of δ³⁴S and δ¹⁸O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area, Indonesia.
    Hosono T; Delinom R; Nakano T; Kagabu M; Shimada J
    Sci Total Environ; 2011 Jun; 409(13):2541-54. PubMed ID: 21507462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiple isotope (S, H, O and C) approach to estimate sulfate increasing mechanism of groundwater in coal mine area.
    Huang P; Zhang Y; Li Y; Gao H; Cui M; Chai S
    Sci Total Environ; 2023 Nov; 900():165852. PubMed ID: 37517724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable sulfur isotope fractionation and discrimination between the sulfur atoms of thiosulfate during oxidation by Halothiobacillus neapolitanus.
    Kelly DP
    FEMS Microbiol Lett; 2008 May; 282(2):299-306. PubMed ID: 18373645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 34S enrichment as a signature of thiosulfate oxidation in the "Proteobacteria".
    Alam M; Fernandes S; Mandal S; Rameez MJ; Bhattacharya S; Peketi A; Mazumdar A; Ghosh W
    FEMS Microbiol Lett; 2021 Jun; 368(12):. PubMed ID: 34151347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.