These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28861525)

  • 1. Impacts of Penicillin Binding Protein 2 Inactivation on β-Lactamase Expression and Muropeptide Profile in
    Huang YW; Wang Y; Lin Y; Lin C; Lin YT; Hsu CC; Yang TC
    mSystems; 2017; 2(4):. PubMed ID: 28861525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay among membrane-bound lytic transglycosylase D1, the CreBC two-component regulatory system, the AmpNG-AmpDI-NagZ-AmpR regulatory circuit, and L1/L2 β-lactamase expression in Stenotrophomonas maltophilia.
    Huang YW; Wu CJ; Hu RM; Lin YT; Yang TC
    Antimicrob Agents Chemother; 2015 Nov; 59(11):6866-72. PubMed ID: 26282431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The signal molecule for beta-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide.
    Dietz H; Pfeifle D; Wiedemann B
    Antimicrob Agents Chemother; 1997 Oct; 41(10):2113-20. PubMed ID: 9333034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NagZ-dependent and NagZ-independent mechanisms for β-lactamase expression in Stenotrophomonas maltophilia.
    Huang YW; Hu RM; Lin CW; Chung TC; Yang TC
    Antimicrob Agents Chemother; 2012 Apr; 56(4):1936-41. PubMed ID: 22252801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of mrcA gene derepresses the basal-level expression of L1 and L2 β-lactamases in Stenotrophomonas maltophilia.
    Lin CW; Lin HC; Huang YW; Chung TC; Yang TC
    J Antimicrob Chemother; 2011 Sep; 66(9):2033-7. PubMed ID: 21719470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction.
    Jacobs C; Huang LJ; Bartowsky E; Normark S; Park JT
    EMBO J; 1994 Oct; 13(19):4684-94. PubMed ID: 7925310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of AmpR in regulation of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia.
    Lin CW; Huang YW; Hu RM; Chiang KH; Yang TC
    Res Microbiol; 2009 Mar; 160(2):152-8. PubMed ID: 19071216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. beta-Lactamase induction and cell wall recycling in gram-negative bacteria.
    Wiedemann B; Pfeifle D; Wiegand I; Janas E
    Drug Resist Updat; 1998; 1(4):223-6. PubMed ID: 16904404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure.
    Ropy A; Cabot G; Sánchez-Diener I; Aguilera C; Moya B; Ayala JA; Oliver A
    Antimicrob Agents Chemother; 2015 Jul; 59(7):3925-34. PubMed ID: 25896695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AmpDI is involved in expression of the chromosomal L1 and L2 beta-lactamases of Stenotrophomonas maltophilia.
    Yang TC; Huang YW; Hu RM; Huang SC; Lin YT
    Antimicrob Agents Chemother; 2009 Jul; 53(7):2902-7. PubMed ID: 19414581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of beta-lactamase in Enterobacter cloacae.
    Wiedemann B; Dietz H; Pfeifle D
    Clin Infect Dis; 1998 Aug; 27 Suppl 1():S42-7. PubMed ID: 9710670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae.
    Hanson ND; Sanders CC
    Curr Pharm Des; 1999 Nov; 5(11):881-94. PubMed ID: 10539994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa.
    Zamorano L; Reeve TM; Deng L; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A
    Antimicrob Agents Chemother; 2010 Sep; 54(9):3557-63. PubMed ID: 20566764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa.
    Asgarali A; Stubbs KA; Oliver A; Vocadlo DJ; Mark BL
    Antimicrob Agents Chemother; 2009 Jun; 53(6):2274-82. PubMed ID: 19273679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of AmpC-Driven β-Lactam Resistance in Pseudomonas aeruginosa: Different Pathways, Different Signaling.
    Torrens G; Hernández SB; Ayala JA; Moya B; Juan C; Cava F; Oliver A
    mSystems; 2019 Dec; 4(6):. PubMed ID: 31796566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?
    Pérez-Gallego M; Torrens G; Castillo-Vera J; Moya B; Zamorano L; Cabot G; Hultenby K; Albertí S; Mellroth P; Henriques-Normark B; Normark S; Oliver A; Juan C
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of N-actylglucosaminyl-1,6 anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine for the induction of beta-lactamase in Enterobacter cloacae.
    Dietz H; Wiedemann B
    Zentralbl Bakteriol; 1996 Jul; 284(2-3):207-17. PubMed ID: 8837381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. σ
    Li LH; Wu CM; Chang CL; Huang HH; Wu CJ; Yang TC
    Microbiol Spectr; 2022 Dec; 10(6):e0279722. PubMed ID: 36350132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction of an AmpR-L2 intergenic segment attenuates the induced beta-lactamase activity of Stenotrophomonas maltophilia.
    Chang YC; Huang YW; Chiang KH; Yang TC; Chung TC
    Eur J Clin Microbiol Infect Dis; 2010 Jul; 29(7):887-90. PubMed ID: 20397035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevating NagZ Improves Resistance to β-Lactam Antibiotics via Promoting AmpC β-Lactamase in
    Yang X; Zeng J; Zhou Q; Yu X; Zhong Y; Wang F; Du H; Nie F; Pang X; Wang D; Fan Y; Bai T; Xu Y
    Front Microbiol; 2020; 11():586729. PubMed ID: 33250874
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.