These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28861562)

  • 1. Tumour-vessel-on-a-chip models for drug delivery.
    Caballero D; Blackburn SM; de Pablo M; Samitier J; Albertazzi L
    Lab Chip; 2017 Nov; 17(22):3760-3771. PubMed ID: 28861562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip.
    Han B; Qu C; Park K; Konieczny SF; Korc M
    Cancer Lett; 2016 Sep; 380(1):319-29. PubMed ID: 26688098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip.
    Feiner-Gracia N; Glinkowska Mares A; Buzhor M; Rodriguez-Trujillo R; Samitier Marti J; Amir RJ; Pujals S; Albertazzi L
    ACS Appl Bio Mater; 2021 Jan; 4(1):669-681. PubMed ID: 33490884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics: a focus on improved cancer targeted drug delivery systems.
    Khan IU; Serra CA; Anton N; Vandamme T
    J Control Release; 2013 Dec; 172(3):1065-74. PubMed ID: 23933524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Targeting of Tumor Cells in a Microfluidic Tumor Model with Multiple Cell Types.
    van de Crommert B; Palacio-Castañeda V; Verdurmen WPR
    Methods Mol Biol; 2024; 2804():237-251. PubMed ID: 38753152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening.
    Ahn J; Ko J; Lee S; Yu J; Kim Y; Jeon NL
    Adv Drug Deliv Rev; 2018 Mar; 128():29-53. PubMed ID: 29626551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines.
    Liu D; Zhang H; Fontana F; Hirvonen JT; Santos HA
    Adv Drug Deliv Rev; 2018 Mar; 128():54-83. PubMed ID: 28801093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment.
    Tsai HF; Trubelja A; Shen AQ; Bao G
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28637915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in on-chip vascularization.
    Haase K; Kamm RD
    Regen Med; 2017 Apr; 12(3):285-302. PubMed ID: 28318376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic Characterization of a Vessel-on-a-Chip Microfluidic System for Ultrasound-Mediated Drug Delivery.
    Beekers I; van Rooij T; Verweij MD; Versluis M; de Jong N; Trietsch SJ; Kooiman K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; 65(4):570-581. PubMed ID: 29610087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Microfluidic Blood-Brain Barrier (BBB) Models.
    Oddo A; Peng B; Tong Z; Wei Y; Tong WY; Thissen H; Voelcker NH
    Trends Biotechnol; 2019 Dec; 37(12):1295-1314. PubMed ID: 31130308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-chip polyelectrolyte coating onto magnetic droplets - towards continuous flow assembly of drug delivery capsules.
    Alorabi AQ; Tarn MD; Gómez-Pastora J; Bringas E; Ortiz I; Paunov VN; Pamme N
    Lab Chip; 2017 Nov; 17(22):3785-3795. PubMed ID: 28991297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From tumour perfusion to drug delivery and clinical translation of in silico cancer models.
    Hadjicharalambous M; Wijeratne PA; Vavourakis V
    Methods; 2021 Jan; 185():82-93. PubMed ID: 32147442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational models of tumor angiogenesis: A nexus of in silico and in vitro models.
    Soleimani S; Shamsi M; Ghazani MA; Modarres HP; Valente KP; Saghafian M; Ashani MM; Akbari M; Sanati-Nezhad A
    Biotechnol Adv; 2018; 36(4):880-893. PubMed ID: 29378235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the reliability of tumour spheroid-on-chip models for replicating intratumoural drug delivery: considering the role of microfluidic parameters.
    Besanjideh M; Shamloo A; Hannani SK
    J Drug Target; 2023 Feb; 31(2):179-193. PubMed ID: 36036226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics for nano-pathophysiology.
    Sato K; Sasaki N; Svahn HA; Sato K
    Adv Drug Deliv Rev; 2014 Jul; 74():115-21. PubMed ID: 24001983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.