These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28861562)

  • 21. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-chip investigation of cell-drug interactions.
    Zheng XT; Yu L; Li P; Dong H; Wang Y; Liu Y; Li CM
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1556-74. PubMed ID: 23428898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human Microcirculation-on-Chip Models in Cancer Research: Key Integration of Lymphatic and Blood Vasculatures.
    Luque-González MA; Reis RL; Kundu SC; Caballero D
    Adv Biosyst; 2020 Jul; 4(7):e2000045. PubMed ID: 32400118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organ-on-a-chip platforms for studying drug delivery systems.
    Bhise NS; Ribas J; Manoharan V; Zhang YS; Polini A; Massa S; Dokmeci MR; Khademhosseini A
    J Control Release; 2014 Sep; 190():82-93. PubMed ID: 24818770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Microfluidic Tumor-on-a-Chip for Assessing Multifunctional Liposomes' Tumor Targeting and Anticancer Efficacy.
    Ran R; Wang HF; Hou F; Liu Y; Hui Y; Petrovsky N; Zhang F; Zhao CX
    Adv Healthc Mater; 2019 Apr; 8(8):e1900015. PubMed ID: 30868753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blood-Vessel-on-a-Chip Platforms for Evaluating Nanoparticle Drug Delivery Systems.
    Li Y; Zhu K; Liu X; Zhang YS
    Curr Drug Metab; 2018; 19(2):100-109. PubMed ID: 28952434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticles and Microfluidic Devices in Cancer Research.
    Maia FR; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():161-171. PubMed ID: 32285370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous on-chip micropumping for microneedle enhanced drug delivery.
    Zahn JD; Deshmukh A; Pisano AP; Liepmann D
    Biomed Microdevices; 2004 Sep; 6(3):183-90. PubMed ID: 15377827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro.
    Moses SR; Adorno JJ; Palmer AF; Song JW
    Am J Physiol Cell Physiol; 2021 Jan; 320(1):C92-C105. PubMed ID: 33176110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Successes and future outlook for microfluidics-based cardiovascular drug discovery.
    Skommer J; Wlodkowic D
    Expert Opin Drug Discov; 2015 Mar; 10(3):231-44. PubMed ID: 25672221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of tumor vascular architecture in drug delivery.
    Narang AS; Varia S
    Adv Drug Deliv Rev; 2011 Jul; 63(8):640-58. PubMed ID: 21514334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering and evaluating drug delivery particles in microfluidic devices.
    Björnmalm M; Yan Y; Caruso F
    J Control Release; 2014 Sep; 190():139-49. PubMed ID: 24794898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.
    Nguyen NT; Shaegh SA; Kashaninejad N; Phan DT
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1403-19. PubMed ID: 23726943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasound assisted particle and cell manipulation on-chip.
    Mulvana H; Cochran S; Hill M
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1600-10. PubMed ID: 23906935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation.
    Rajapaksa A; Qi A; Yeo LY; Coppel R; Friend JR
    Lab Chip; 2014 Jun; 14(11):1858-65. PubMed ID: 24740643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel microfluidic tool for the evaluation of local drug delivery systems in simulated
    Oates WA; Anastasiou AD
    Lab Chip; 2024 Aug; 24(16):3840-3849. PubMed ID: 39045628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform.
    Liu W; Wang J
    Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.