BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28861827)

  • 1. Analysis of Nanobody-Epitope Interactions in Living Cells via Quantitative Protein Transport Assays.
    Früholz S; Pimpl P
    Methods Mol Biol; 2017; 1662():171-182. PubMed ID: 28861827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Interaction Studies by Measuring Förster Resonance Energy Transfer Through Fluorescence Lifetime Imaging Microscopy (FRET/FLIM).
    Fäßler F; Pimpl P
    Methods Mol Biol; 2017; 1662():159-170. PubMed ID: 28861826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome.
    Künzl F; Früholz S; Fäßler F; Li B; Pimpl P
    Nat Plants; 2016 Mar; 2():16017. PubMed ID: 27249560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacuolar Sorting Determinants: Isolation and Study.
    Peixoto B; Pereira S; Pereira C; Pissarra J
    Methods Mol Biol; 2018; 1789():21-31. PubMed ID: 29916069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway.
    Di Sansebastiano GP; Paris N; Marc-Martin S; Neuhaus JM
    Plant J; 1998 Aug; 15(4):449-57. PubMed ID: 9753772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Exocyst-Positive Organelle (EXPO)-Mediated Unconventional Protein Secretion (UPS) in Plant Cells.
    Ding Y; Wang J
    Methods Mol Biol; 2017; 1662():231-241. PubMed ID: 28861833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning.
    Bottanelli F; Gershlick DC; Denecke J
    Traffic; 2012 Feb; 13(2):338-54. PubMed ID: 22004564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of a lytic central vacuole and of neutral peripheral vacuoles can be visualized by green fluorescent proteins targeted to either type of vacuoles.
    Di Sansebastiano GP; Paris N; Marc-Martin S; Neuhaus JM
    Plant Physiol; 2001 May; 126(1):78-86. PubMed ID: 11351072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of organelles in the vacuolar-sorting pathway by visualization with GFP in tobacco BY-2 cells.
    Mitsuhashi N; Shimada T; Mano S; Nishimura M; Hara-Nishimura I
    Plant Cell Physiol; 2000 Sep; 41(9):993-1001. PubMed ID: 11100771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells.
    Miao Y; Li KY; Li HY; Yao X; Jiang L
    Plant J; 2008 Dec; 56(5):824-39. PubMed ID: 18680561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardosin A contains two vacuolar sorting signals using different vacuolar routes in tobacco epidermal cells.
    Pereira C; Pereira S; Satiat-Jeunemaitre B; Pissarra J
    Plant J; 2013 Oct; 76(1):87-100. PubMed ID: 23808398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Organelle pH Estimate and Measurement in Plant Secretory Pathway.
    Shen J
    Methods Mol Biol; 2017; 1662():223-230. PubMed ID: 28861832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins.
    Katoh Y; Nozaki S; Hartanto D; Miyano R; Nakayama K
    J Cell Sci; 2015 Jun; 128(12):2351-62. PubMed ID: 25964651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications.
    Götzke H; Kilisch M; Martínez-Carranza M; Sograte-Idrissi S; Rajavel A; Schlichthaerle T; Engels N; Jungmann R; Stenmark P; Opazo F; Frey S
    Nat Commun; 2019 Sep; 10(1):4403. PubMed ID: 31562305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GFP is the way to glow: bioimaging of the plant endomembrane system.
    Brandizzi F; Irons SL; Johansen J; Kotzer A; Neumann U
    J Microsc; 2004 May; 214(Pt 2):138-58. PubMed ID: 15102062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration in yeast of the function of BP-80, a putative plant vacuolar sorting receptor.
    Humair D; Hernández Felipe D; Neuhaus JM; Paris N
    Plant Cell; 2001 Apr; 13(4):781-92. PubMed ID: 11283336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of maize Opaque-2 and the transcriptional co-activators GCN5 and ADA2, in the modulation of transcriptional activity.
    Bhat RA; Borst JW; Riehl M; Thompson RD
    Plant Mol Biol; 2004 May; 55(2):239-52. PubMed ID: 15604678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein mislocalization in plant cells using a GFP-binding chromobody.
    Schornack S; Fuchs R; Huitema E; Rothbauer U; Lipka V; Kamoun S
    Plant J; 2009 Nov; 60(4):744-54. PubMed ID: 19686537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco.
    De Caroli M; Lenucci MS; Di Sansebastiano GP; Dalessandro G; De Lorenzo G; Piro G
    Plant J; 2011 Jan; 65(2):295-308. PubMed ID: 21223393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.