BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28861827)

  • 21. Peptides in headlock--a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy.
    Braun MB; Traenkle B; Koch PA; Emele F; Weiss F; Poetz O; Stehle T; Rothbauer U
    Sci Rep; 2016 Jan; 6():19211. PubMed ID: 26791954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic protein trafficking to the cell wall.
    De Caroli M; Lenucci MS; Di Sansebastiano GP; Dalessandro G; De Lorenzo G; Piro G
    Plant Signal Behav; 2011 Jul; 6(7):1012-5. PubMed ID: 21701253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studying protein export from the endoplasmic reticulum in plants.
    Hanton SL; Matheson LA; Brandizzi F
    Methods Mol Biol; 2007; 390():297-308. PubMed ID: 17951696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of Membrane Protein Topology in the Plant Secretory Pathway.
    Guo J; Miao Y; Cai Y
    Methods Mol Biol; 2017; 1662():87-95. PubMed ID: 28861819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy profile of nanobody-GFP complex under force.
    Klamecka K; Severin PM; Milles LF; Gaub HE; Leonhardt H
    Phys Biol; 2015 Sep; 12(5):056009. PubMed ID: 26356046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species.
    Park M; Kim SJ; Vitale A; Hwang I
    Plant Physiol; 2004 Feb; 134(2):625-39. PubMed ID: 14730078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorting of plant vacuolar proteins is initiated in the ER.
    Niemes S; Labs M; Scheuring D; Krueger F; Langhans M; Jesenofsky B; Robinson DG; Pimpl P
    Plant J; 2010 May; 62(4):601-14. PubMed ID: 20149141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-level secretion of functional green fluorescent protein from transgenic tobacco cell cultures: characterization and sensing.
    Su WW; Guan P; Bugos RC
    Biotechnol Bioeng; 2004 Mar; 85(6):610-9. PubMed ID: 14966802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient Secretory Enzyme Expression in Leaf Protoplasts to Characterize SNARE Functional Classes in Conventional and Unconventional Secretion.
    Pietro DSG; Fabrizio B
    Methods Mol Biol; 2017; 1662():209-221. PubMed ID: 28861831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation.
    Tamura K; Yamada K; Shimada T; Hara-Nishimura I
    Plant J; 2004 Aug; 39(3):393-402. PubMed ID: 15255868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.
    Wendel S; Fischer EC; Martínez V; Seppälä S; Nørholm MH
    Microb Cell Fact; 2016 May; 15():71. PubMed ID: 27142225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Use of FRET/FLIM to Study Proteins Interacting with Plant Receptor Kinases.
    Weidtkamp-Peters S; Stahl Y
    Methods Mol Biol; 2017; 1621():163-175. PubMed ID: 28567653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of protoplasts to study protein synthesis and transport by the plant endomembrane system.
    Denecke J; Vitale A
    Methods Cell Biol; 1995; 50():335-48. PubMed ID: 8531806
    [No Abstract]   [Full Text] [Related]  

  • 34. Protein domains involved in assembly in the endoplasmic reticulum promote vacuolar delivery when fused to secretory GFP, indicating a protein quality control pathway for degradation in the plant vacuole.
    Foresti O; De Marchis F; de Virgilio M; Klein EM; Arcioni S; Bellucci M; Vitale A
    Mol Plant; 2008 Nov; 1(6):1067-76. PubMed ID: 19825604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vacuolar system distribution in Arabidopsis tissues, visualized using GFP fusion proteins.
    Fluckiger R; De Caroli M; Piro G; Dalessandro G; Neuhaus JM; Di Sansebastiano GP
    J Exp Bot; 2003 Jun; 54(387):1577-84. PubMed ID: 12730271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Positive fluorescent selection permits precise, rapid, and in-depth overexpression analysis in plant protoplasts.
    Bargmann BO; Birnbaum KD
    Plant Physiol; 2009 Mar; 149(3):1231-9. PubMed ID: 19168642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutathione S-transferase related detoxification processes are correlated with receptor-mediated vacuolar sorting mechanisms.
    Barozzi F; Di Sansebastiano GP; Sabella E; Aprile A; Piro G; De Bellis L; Nutricati E
    Plant Cell Rep; 2017 Sep; 36(9):1361-1373. PubMed ID: 28577236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signal peptide-dependent targeting of a rice alpha-amylase and cargo proteins to plastids and extracellular compartments of plant cells.
    Chen MH; Huang LF; Li HM; Chen YR; Yu SM
    Plant Physiol; 2004 Jul; 135(3):1367-77. PubMed ID: 15235120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vacuolar sorting receptor (VSR) proteins reach the plasma membrane in germinating pollen tubes.
    Wang H; Zhuang XH; Hillmer S; Robinson DG; Jiang LW
    Mol Plant; 2011 Sep; 4(5):845-53. PubMed ID: 21430175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical Secretory Pathway Modulation in Plant Protoplasts.
    De Marchis F; Pompa A; Bellucci M
    Methods Mol Biol; 2016; 1459():67-79. PubMed ID: 27665551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.