These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28861955)
21. Optical Coherence Tomography for live imaging of mammalian development. Larina IV; Larin KV; Justice MJ; Dickinson ME Curr Opin Genet Dev; 2011 Oct; 21(5):579-84. PubMed ID: 21962442 [TBL] [Abstract][Full Text] [Related]
22. Embryo mechanics: balancing force production with elastic resistance during morphogenesis. Davidson LA Curr Top Dev Biol; 2011; 95():215-41. PubMed ID: 21501753 [TBL] [Abstract][Full Text] [Related]
23. A method to study the hemodynamics of chicken embryo's aortic arches using optical coherence tomography. Ko ZY; Mehta K; Jamil M; Yap CH; Chen N J Biophotonics; 2017 Mar; 10(3):353-359. PubMed ID: 27813365 [TBL] [Abstract][Full Text] [Related]
24. High-resolution line-scan Brillouin microscopy for live imaging of mechanical properties during embryo development. Bevilacqua C; Gomez JM; Fiuza UM; Chan CJ; Wang L; Hambura S; Eguren M; Ellenberg J; Diz-Muñoz A; Leptin M; Prevedel R Nat Methods; 2023 May; 20(5):755-760. PubMed ID: 36997817 [TBL] [Abstract][Full Text] [Related]
25. In vivo assessment of wall strain in embryonic chick heart by spectral domain optical coherence tomography. Ma Z; Dou S; Zhao Y; Guo C; Liu J; Wang Q; Xu T; Wang RK; Wang Y Appl Opt; 2015 Nov; 54(31):9253-7. PubMed ID: 26560579 [TBL] [Abstract][Full Text] [Related]
26. The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy. Weber IP; Yun SH; Scarcelli G; Franze K Phys Biol; 2017 Nov; 14(6):065006. PubMed ID: 28406094 [TBL] [Abstract][Full Text] [Related]
27. Assessment of Corneal Biomechanical Properties with Inflation Test Using Optical Coherence Tomography. Wang L; Tian L; Huang Y; Huang Y; Zheng Y Ann Biomed Eng; 2018 Feb; 46(2):247-256. PubMed ID: 29297099 [TBL] [Abstract][Full Text] [Related]
28. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography. Jansen SM; de Bruin DM; Faber DJ; Dobbe IJGG; Heeg E; Milstein DMJ; Strackee SD; van Leeuwen TG J Biomed Opt; 2017 Aug; 22(8):1-9. PubMed ID: 28822141 [TBL] [Abstract][Full Text] [Related]
29. Multimodal optical imaging with multiphoton microscopy and optical coherence tomography. Tang S; Zhou Y; Ju MJ J Biophotonics; 2012 May; 5(5-6):396-403. PubMed ID: 22461146 [TBL] [Abstract][Full Text] [Related]
30. Fourier-domain optical coherence tomography imaging in keratoconus: a corneal structural classification. Sandali O; El Sanharawi M; Temstet C; Hamiche T; Galan A; Ghouali W; Goemaere I; Basli E; Borderie V; Laroche L Ophthalmology; 2013 Dec; 120(12):2403-2412. PubMed ID: 23932599 [TBL] [Abstract][Full Text] [Related]
31. Dynamic Imaging of Mouse Embryos and Cardiodynamics in Static Culture. Lopez AL; Larina IV Methods Mol Biol; 2018; 1752():41-52. PubMed ID: 29564760 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. Luo W; Marks DL; Ralston TS; Boppart SA J Biomed Opt; 2006; 11(2):021014. PubMed ID: 16674189 [TBL] [Abstract][Full Text] [Related]
33. Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy. Zhou C; Wang Y; Aguirre AD; Tsai TH; Cohen DW; Connolly JL; Fujimoto JG J Biomed Opt; 2010; 15(1):016001. PubMed ID: 20210448 [TBL] [Abstract][Full Text] [Related]
34. Optical coherence tomography as a noninvasive 3D real time imaging tool for the rapid evaluation of phenotypic variations in insect embryonic development. Su Y; Wei L; Tan H; Li J; Li W; Fu L; Wang T; Kang L; Yao XS J Biophotonics; 2020 Feb; 13(2):e201960047. PubMed ID: 31682322 [TBL] [Abstract][Full Text] [Related]
35. En-face optical coherence tomography as a novel tool for exploring the ocular surface: a pilot comparative study to conventional B-scans and in vivo confocal microscopy. Tahiri Joutei Hassani R; Liang H; El Sanharawi M; Brasnu E; Kallel S; Labbé A; Baudouin C Ocul Surf; 2014 Oct; 12(4):285-306. PubMed ID: 25284774 [TBL] [Abstract][Full Text] [Related]
36. Staging mouse preimplantation development in vivo using optical coherence microscopy. Moore EL; Wang S; Larina IV J Biophotonics; 2019 May; 12(5):e201800364. PubMed ID: 30578614 [TBL] [Abstract][Full Text] [Related]
37. Miniature probe integrating optical-resolution photoacoustic microscopy, optical coherence tomography, and ultrasound imaging: proof-of-concept. Dai X; Xi L; Duan C; Yang H; Xie H; Jiang H Opt Lett; 2015 Jun; 40(12):2921-4. PubMed ID: 26076296 [TBL] [Abstract][Full Text] [Related]
38. Multimodal high-resolution embryonic imaging with light sheet fluorescence microscopy and optical coherence tomography. Khajavi B; Sun R; Chawla HS; Le HH; Singh M; Schill AW; Dickinson ME; Mayerich D; Larin KV Opt Lett; 2021 Sep; 46(17):4180-4183. PubMed ID: 34469969 [TBL] [Abstract][Full Text] [Related]
40. In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography. Boone MA; Suppa M; Dhaenens F; Miyamoto M; Marneffe A; Jemec GB; Del Marmol V; Nebosis R Arch Dermatol Res; 2016 Jan; 308(1):7-20. PubMed ID: 26563265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]