These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 28862152)
1. Tumour control in ion beam radiotherapy with different ions in the presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model. Strigari L; Torriani F; Manganaro L; Inaniwa T; Dalmasso F; Cirio R; Attili A Phys Med Biol; 2018 Mar; 63(6):065012. PubMed ID: 28862152 [TBL] [Abstract][Full Text] [Related]
2. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications. Wenzl T; Wilkens JJ Radiat Oncol; 2011 Dec; 6():171. PubMed ID: 22172079 [TBL] [Abstract][Full Text] [Related]
3. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes. Antonovic L; Lindblom E; Dasu A; Bassler N; Furusawa Y; Toma-Dasu I J Radiat Res; 2014 Sep; 55(5):902-11. PubMed ID: 24728013 [TBL] [Abstract][Full Text] [Related]
4. Radiobiology with heavy charged particles: a historical review. Skarsgard LD Phys Med; 1998 Jul; 14 Suppl 1():1-19. PubMed ID: 11542635 [TBL] [Abstract][Full Text] [Related]
5. Experimental validation of stochastic microdosimetric kinetic model for multi-ion therapy treatment planning with helium-, carbon-, oxygen-, and neon-ion beams. Inaniwa T; Suzuki M; Hyun Lee S; Mizushima K; Iwata Y; Kanematsu N; Shirai T Phys Med Biol; 2020 Feb; 65(4):045005. PubMed ID: 31968318 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity study of the microdosimetric kinetic model parameters for carbon ion radiotherapy. Dahle TJ; Magro G; Ytre-Hauge KS; Stokkevåg CH; Choi K; Mairani A Phys Med Biol; 2018 Nov; 63(22):225016. PubMed ID: 30418940 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Furusawa Y; Fukutsu K; Aoki M; Itsukaichi H; Eguchi-Kasai K; Ohara H; Yatagai F; Kanai T; Ando K Radiat Res; 2000 Nov; 154(5):485-96. PubMed ID: 11025645 [TBL] [Abstract][Full Text] [Related]
9. Understanding Relative Biological Effectiveness and Clinical Outcome of Prostate Cancer Therapy Using Particle Irradiation: Analysis of Tumor Control Probability With the Modified Microdosimetric Kinetic Model. Besuglow J; Tessonnier T; Mein S; Eichkorn T; Haberer T; Herfarth K; Abdollahi A; Debus J; Mairani A Int J Radiat Oncol Biol Phys; 2024 Aug; 119(5):1545-1556. PubMed ID: 38423224 [TBL] [Abstract][Full Text] [Related]
10. Adaptation of the microdosimetric kinetic model to hypoxia. Bopp C; Hirayama R; Inaniwa T; Kitagawa A; Matsufuji N; Noda K Phys Med Biol; 2016 Nov; 61(21):7586-7599. PubMed ID: 27716637 [TBL] [Abstract][Full Text] [Related]
11. Adaptation of stochastic microdosimetric kinetic model to hypoxia for hypo-fractionated multi-ion therapy treatment planning. Inaniwa T; Kanematsu N; Shinoto M; Koto M; Yamada S Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34560678 [TBL] [Abstract][Full Text] [Related]
12. A Monte Carlo approach to the microdosimetric kinetic model to account for dose rate time structure effects in ion beam therapy with application in treatment planning simulations. Manganaro L; Russo G; Cirio R; Dalmasso F; Giordanengo S; Monaco V; Muraro S; Sacchi R; Vignati A; Attili A Med Phys; 2017 Apr; 44(4):1577-1589. PubMed ID: 28130821 [TBL] [Abstract][Full Text] [Related]
13. Modelling of the oxygen enhancement ratio for ion beam radiation therapy. Wenzl T; Wilkens JJ Phys Med Biol; 2011 Jun; 56(11):3251-68. PubMed ID: 21540489 [TBL] [Abstract][Full Text] [Related]
14. Estimations of relative biological effectiveness of secondary fragments in carbon ion irradiation of water using CR-39 plastic detector and microdosimetric kinetic model. Hirano Y; Kodaira S; Souda H; Osaki K; Torikoshi M Med Phys; 2020 Feb; 47(2):781-789. PubMed ID: 31705815 [TBL] [Abstract][Full Text] [Related]
15. Lateral variations of radiobiological properties of therapeutic fields of Dewey S; Burigo L; Pshenichnov I; Mishustin I; Bleicher M Phys Med Biol; 2017 Jun; 62(14):5884-5907. PubMed ID: 28557800 [TBL] [Abstract][Full Text] [Related]
16. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer. Inaniwa T; Kanematsu N; Suzuki M; Hawkins RB Phys Med Biol; 2015 May; 60(10):4105-21. PubMed ID: 25933161 [TBL] [Abstract][Full Text] [Related]
18. Spot-scanning hadron arc (SHArc) therapy: A proof of concept using single- and multi-ion strategies with helium, carbon, oxygen, and neon ions. Mein S; Kopp B; Tessonnier T; Liermann J; Abdollahi A; Debus J; Haberer T; Mairani A Med Phys; 2022 Sep; 49(9):6082-6097. PubMed ID: 35717613 [TBL] [Abstract][Full Text] [Related]
19. The influence of hypoxia on LET and RBE relationships with implications for ultra-high dose rates and FLASH modelling. Jones B Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35545062 [No Abstract] [Full Text] [Related]
20. Fast Biological Modeling for Voxel-based Heavy Ion Treatment Planning Using the Mechanistic Repair-Misrepair-Fixation Model and Nuclear Fragment Spectra. Kamp F; Cabal G; Mairani A; Parodi K; Wilkens JJ; Carlson DJ Int J Radiat Oncol Biol Phys; 2015 Nov; 93(3):557-68. PubMed ID: 26460998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]