These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 28862567)

  • 1. Incorporation of Farnesyl Pyrophosphate Derivertives into Abscisic Acid and Its Biosynthetic Intermediates in Cevcospova cruenta.
    Yamamoto H; Oritani T
    Biosci Biotechnol Biochem; 1997 Jan; 61(5):821-824. PubMed ID: 28862567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of abscisic acid by the direct pathway via ionylideneethane in a fungus, Cercospora cruenta.
    Inomata M; Hirai N; Yoshida R; Ohigashi H
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2571-80. PubMed ID: 15618629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biosynthetic pathway to abscisic acid via ionylideneethane in the fungus Botrytis cinerea.
    Inomata M; Hirai N; Yoshida R; Ohigashi H
    Phytochemistry; 2004 Oct; 65(19):2667-78. PubMed ID: 15464154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early biosynthetic pathway to abscisic acid in Cercospora cruenta.
    Yamamoto H; Inomata M; Tsuchiya S; Nakamura M; Uchiyama T; Oritani T
    Biosci Biotechnol Biochem; 2000 Oct; 64(10):2075-82. PubMed ID: 11129578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Analysis of Abscisic Acid Analogs Produced by Cercospora cruenta.
    Yamamoto H; Sugiyama T; Oritani T
    Biosci Biotechnol Biochem; 1996 Jan; 60(5):750-4. PubMed ID: 27281136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of 2,3-dihydro-gamma-ionylideneethanol in Cercospora cruenta.
    Yamamoto H; Inomata M; Uchiyama T; Oritani T
    Biosci Biotechnol Biochem; 2001 Apr; 65(4):810-6. PubMed ID: 11388457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of chiral ionylideneacetic acids on the abscisic acid biosynthetic pathway in Cercospora.
    Yamamoto H; Inomata M; Tsuchiya S; Nakamura M; Oritani T
    Biosci Biotechnol Biochem; 2000 Dec; 64(12):2644-50. PubMed ID: 11210128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paclobutrazol Inhibits Abscisic Acid Biosynthesis in Cercospora rosicola.
    Norman SM; Bennett RD; Poling SM; Maier VP; Nelson MD
    Plant Physiol; 1986 Jan; 80(1):122-5. PubMed ID: 16664565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoprenoid enzyme systems of silkworm. II. Formation of the juvenile hormone skeletons by farnesyl pyrophosphate synthetase II.
    Koyama T; Matsubara M; Ogura K
    J Biochem; 1985 Aug; 98(2):457-63. PubMed ID: 4066650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bisabolyl-derived sesquiterpenes from tobacco 5-epi-aristolochene synthase-catalyzed cyclization of (2Z,6E)-farnesyl diphosphate.
    Faraldos JA; O'Maille PE; Dellas N; Noel JP; Coates RM
    J Am Chem Soc; 2010 Mar; 132(12):4281-9. PubMed ID: 20201526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from Zea mays.
    Vattekkatte A; Gatto N; Köllner TG; Degenhardt J; Gershenzon J; Boland W
    Org Biomol Chem; 2015 Jun; 13(21):6021-30. PubMed ID: 25940560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of squalene synthetase.
    Koyama T; Ogura K; Seto S
    Biochim Biophys Acta; 1980 Feb; 617(2):218-24. PubMed ID: 7357018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial hydroxylation of (+/-)- and (-)-(2Z,4E)-5-(1',2'-epoxy-2',6',6'-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid into (+/-)- and (-)-xanthoxin acid by Cunninghamella echinulata.
    Okazaki R; Oritani T; Hara Y; Yamamoto H
    Biosci Biotechnol Biochem; 2001 Apr; 65(4):943-6. PubMed ID: 11388477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Male-specific tetraene and triene hydrocarbons ofCarpophilus hemipterus: Structure and pheromonal activity.
    Bartelt RJ; Weisleder D; Dowd PF; Plattner RD
    J Chem Ecol; 1992 Mar; 18(3):379-402. PubMed ID: 24254944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (4E)-dehydrocitrals [(2E,4E)- and (2Z,4E )-3,7-dimethyl-2,4,6-octatrienals] from acarid mite Histiogaster sp. A096 (Acari: Acaridae).
    Hiraoka H; Mori N; Nishida R; Kuwahara Y
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2749-54. PubMed ID: 11826973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of α-humulene synthase from
    Alemdar S; König JC; Seidel K; Kirschning A; Scheper T; Beutel S
    Eng Life Sci; 2018 Sep; 18(9):654-658. PubMed ID: 32624945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 1,6-ring closure mechanism for (+)-δ-cadinene synthase?
    Faraldos JA; Miller DJ; González V; Yoosuf-Aly Z; Cascón O; Li A; Allemann RK
    J Am Chem Soc; 2012 Apr; 134(13):5900-8. PubMed ID: 22397618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi.
    Hirai N; Yoshida R; Todoroki Y; Ohigashi H
    Biosci Biotechnol Biochem; 2000 Jul; 64(7):1448-58. PubMed ID: 10945263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis.
    Milborrow BV
    J Exp Bot; 2001 Jun; 52(359):1145-64. PubMed ID: 11432933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular regulation of santalol biosynthesis in Santalum album L.
    Rani A; Ravikumar P; Reddy MD; Kush A
    Gene; 2013 Sep; 527(2):642-8. PubMed ID: 23860319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.