These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28862665)

  • 1. Wearable Devices for Classification of Inadequate Posture at Work Using Neural Networks.
    Barkallah E; Freulard J; Otis MJ; Ngomo S; Ayena JC; Desrosiers C
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28862665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yoga Posture Recognition and Quantitative Evaluation with Wearable Sensors Based on Two-Stage Classifier and Prior Bayesian Network.
    Wu Z; Zhang J; Chen K; Fu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Inertial Measurement Unit Sensing System for Musculoskeletal Disorders Prevention in Construction.
    Zhao J; Obonyo E; G Bilén S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33668433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation.
    Liang W; Wang F; Fan A; Zhao W; Yao W; Yang P
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ability of Wearable Accelerometers-Based Measures to Assess the Stability of Working Postures.
    Guo L; Kou J; Wu M
    Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wearable Sensor-Based Platform for Surgeon Posture Monitoring: A Tool to Prevent Musculoskeletal Disorders.
    Carbonaro N; Mascherini G; Bartolini I; Ringressi MN; Taddei A; Tognetti A; Vanello N
    Int J Environ Res Public Health; 2021 Apr; 18(7):. PubMed ID: 33918411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of static postures with wearable sensors mounted on loose clothing.
    Jayasinghe U; Janko B; Hwang F; Harwin WS
    Sci Rep; 2023 Jan; 13(1):131. PubMed ID: 36599887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Devices for Ergonomics: A Systematic Literature Review.
    Stefana E; Marciano F; Rossi D; Cocca P; Tomasoni G
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.
    Zhao Y; Zhou S
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
    Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K
    J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Monitoring Devices for Biomechanical Risk Assessment at Work: Current Status and Future Challenges-A Systematic Review.
    Alberto R; Draicchio F; Varrecchia T; Silvetti A; Iavicoli S
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30217079
    [No Abstract]   [Full Text] [Related]  

  • 15. A lightweight sensing platform for monitoring sleep quality and posture: a simulated validation study.
    Kwasnicki RM; Cross GWV; Geoghegan L; Zhang Z; Reilly P; Darzi A; Yang GZ; Emery R
    Eur J Med Res; 2018 May; 23(1):28. PubMed ID: 29848376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Movements and Postures Using Wearable Sensors for Implementation in a Bi-Hormonal Artificial Pancreas System.
    Sawaryn B; Klaassen M; van Beijnum BJ; Zwart H; Veltink PH
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the Effectiveness of Feedback from Wearable Inertial Sensors during Work-Related Activities: A Scoping Review.
    Lee R; James C; Edwards S; Skinner G; Young JL; Snodgrass SJ
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640695
    [No Abstract]   [Full Text] [Related]  

  • 18. Evaluating the feasibility of two post-hoc correction techniques for mitigating posture-induced measurement errors associated with wearable motion capture.
    Leineweber MJ; Gomez Orozco MD; Andrysek J
    Med Eng Phys; 2019 Sep; 71():38-44. PubMed ID: 31285135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferred Placement and Usability of a Smart Textile System vs. Inertial Measurement Units for Activity Monitoring.
    Mokhlespour Esfahani MI; Nussbaum MA
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning the Orientation of a Loosely-Fixed Wearable IMU Relative to the Body Improves the Recognition Rate of Human Postures and Activities.
    Del Rosario MB; Lovell NH; Redmond SJ
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.