These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28862665)
21. Ambient and Wearable Sensor Technologies for Energy Expenditure Quantification of Ageing Adults. Leone A; Rescio G; Diraco G; Manni A; Siciliano P; Caroppo A Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808387 [TBL] [Abstract][Full Text] [Related]
22. Capability of Machine Learning Algorithms to Classify Safe and Unsafe Postures during Weight Lifting Tasks Using Inertial Sensors. Prisco G; Romano M; Esposito F; Cesarelli M; Santone A; Donisi L; Amato F Diagnostics (Basel); 2024 Mar; 14(6):. PubMed ID: 38535000 [TBL] [Abstract][Full Text] [Related]
23. Assessment of a Multi-Sensor FBG-Based Wearable System in Sitting Postures Recognition and Respiratory Rate Evaluation of Office Workers. Zaltieri M; Lo Presti D; Bravi M; Caponero MA; Sterzi S; Schena E; Massaroni C IEEE Trans Biomed Eng; 2023 May; 70(5):1673-1682. PubMed ID: 37079397 [TBL] [Abstract][Full Text] [Related]
24. Manufacturing worker perceptions of using wearable inertial sensors for multiple work shifts. Zhang X; Schall MC; Chen H; Gallagher S; Davis GA; Sesek R Appl Ergon; 2022 Jan; 98():103579. PubMed ID: 34507084 [TBL] [Abstract][Full Text] [Related]
25. An evaluation of wearable sensors and their placements for analyzing construction worker's trunk posture in laboratory conditions. Lee W; Seto E; Lin KY; Migliaccio GC Appl Ergon; 2017 Nov; 65():424-436. PubMed ID: 28420483 [TBL] [Abstract][Full Text] [Related]
26. Stochastic-Biomechanic Modeling and Recognition of Human Movement Primitives, in Industry, Using Wearables. Olivas-Padilla BE; Manitsaris S; Menychtas D; Glushkova A Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916681 [TBL] [Abstract][Full Text] [Related]
27. An IMU-Based Wearable System for Respiratory Rate Estimation in Static and Dynamic Conditions. Angelucci A; Aliverti A Cardiovasc Eng Technol; 2023 Jun; 14(3):351-363. PubMed ID: 36849621 [TBL] [Abstract][Full Text] [Related]
28. Human Activities and Postures Recognition: From Inertial Measurements to Quaternion-Based Approaches. Zmitri M; Fourati H; Vuillerme AN Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547055 [TBL] [Abstract][Full Text] [Related]
29. A Data-Driven Approach to Predict Fatigue in Exercise Based on Motion Data from Wearable Sensors or Force Plate. Jiang Y; Hernandez V; Venture G; Kulić D; K Chen B Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671497 [TBL] [Abstract][Full Text] [Related]
30. Estimation of Foot Plantar Center of Pressure Trajectories with Low-Cost Instrumented Insoles Using an Individual-Specific Nonlinear Model. Hu X; Zhao J; Peng D; Sun Z; Qu X Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389857 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of self-supervised pre-training for automatic infant movement classification using wearable movement sensors. Vaaras E; Airaksinen M; Vanhatalo S; Rasanen O Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38083169 [TBL] [Abstract][Full Text] [Related]
32. Detection of posture and mobility in individuals at risk of developing pressure ulcers. Caggiari S; Worsley PR; Fryer SL; Mace J; Bader DL Med Eng Phys; 2021 May; 91():39-47. PubMed ID: 34074464 [TBL] [Abstract][Full Text] [Related]
33. On-Body Sensor Position Identification with a Simple, Robust and Accurate Method, Validated in Patients with Parkinson's Disease. Kostikis N; Rigas G; Tachos N; Konitsiotis S; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4156-4159. PubMed ID: 33018913 [TBL] [Abstract][Full Text] [Related]
34. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning. Zimmermann T; Taetz B; Bleser G Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262 [TBL] [Abstract][Full Text] [Related]
35. [From complexity to simplification: contribution of the EPM Research Unit to producing a toolkit for risk assessment and management of biomechanical overload and WMSDs prevention]. Occhipinti E; Colombini D Med Lav; 2011; 102(2):174-92. PubMed ID: 21485055 [TBL] [Abstract][Full Text] [Related]
36. Attributes' Importance for Zero-Shot Pose-Classification Based on Wearable Sensors. Ohashi H; Al-Naser M; Ahmed S; Nakamura K; Sato T; Dengel A Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071586 [TBL] [Abstract][Full Text] [Related]
37. Human emotion classification based on multiple physiological signals by wearable system. Liu X; Wang Q; Liu D; Wang Y; Zhang Y; Bai O; Sun J Technol Health Care; 2018; 26(S1):459-469. PubMed ID: 29758969 [TBL] [Abstract][Full Text] [Related]
38. Sleep Posture Classification Using Bed Sensor Data and Neural Networks. Enayati M; Skubic M; Keller JM; Popescu M; Farahani NZ Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():461-465. PubMed ID: 30440434 [TBL] [Abstract][Full Text] [Related]
39. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors. Li F; Shirahama K; Nisar MA; Köping L; Grzegorzek M Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29495310 [TBL] [Abstract][Full Text] [Related]
40. Artificial Neural Network for in-Bed Posture Classification Using Bed-Sheet Pressure Sensors. Matar G; Lina JM; Kaddoum G IEEE J Biomed Health Inform; 2020 Jan; 24(1):101-110. PubMed ID: 30762571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]