These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 2886267)
1. Thermal freedom of Graomys griseoflavus in a seasonal environment. Caviedes-Vidal E; Bozinovic F; Rosenmann M Comp Biochem Physiol A Comp Physiol; 1987; 87(2):257-9. PubMed ID: 2886267 [TBL] [Abstract][Full Text] [Related]
2. Thermoregulatory patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Du Plessis A; Erasmus T; Kerley GI Comp Biochem Physiol A Comp Physiol; 1989; 94(2):215-20. PubMed ID: 2573468 [TBL] [Abstract][Full Text] [Related]
3. Seasonal variation in thermal tolerance, oxygen consumption, antioxidative enzymes and non-specific immune indices of Indian hill trout, Barilius bendelisis (Hamilton, 1807) from central Himalaya, India. Sharma NK; Akhtar MS; Pandey N; Singh R; Singh AK J Therm Biol; 2015 Aug; 52():166-76. PubMed ID: 26267511 [TBL] [Abstract][Full Text] [Related]
4. Bat thermoregulation in the heat: seasonal variation in evaporative cooling capacities in four species of European bats. Czenze ZJ; Noakes MJ; Wojciechowski MS J Therm Biol; 2024 Jul; 123():103911. PubMed ID: 38991263 [TBL] [Abstract][Full Text] [Related]
6. Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature. Ayton S; Tomlinson S; Phillips RD; Dixon KW; Withers PC J Exp Biol; 2016 May; 219(Pt 10):1552-62. PubMed ID: 26994173 [TBL] [Abstract][Full Text] [Related]
7. Laboratory metabolism and evaporative water loss of the aardwolf, Proteles cristatus. Anderson MD; Williams JB; Richardson PR Physiol Zool; 1997; 70(4):464-9. PubMed ID: 9237307 [TBL] [Abstract][Full Text] [Related]
8. Seasonal changes in heat balance of dogs acclimatized to outdoor climate. Sugano Y Jpn J Physiol; 1981; 31(4):465-75. PubMed ID: 7328901 [TBL] [Abstract][Full Text] [Related]
9. Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird. Noakes MJ; Wolf BO; McKechnie AE J Exp Biol; 2016 Mar; 219(Pt 6):859-69. PubMed ID: 26787477 [TBL] [Abstract][Full Text] [Related]
10. Physiological plasticity of metabolic rates in the invasive honey bee and an endemic Australian bee species. Tomlinson S; Dixon KW; Didham RK; Bradshaw SD J Comp Physiol B; 2015 Dec; 185(8):835-44. PubMed ID: 26377208 [TBL] [Abstract][Full Text] [Related]
11. Seasonal variation in the thermal responses to changing environmental temperature in the world's northernmost land bird. Nord A; Folkow LP J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29113988 [TBL] [Abstract][Full Text] [Related]
12. Seasonal variation in the thermal biology of a terrestrial toad, Rhinella icterica (Bufonidae), from the Brazilian Atlantic Forest. Anderson RCO; Bovo RP; Andrade DV J Therm Biol; 2018 May; 74():77-83. PubMed ID: 29801654 [TBL] [Abstract][Full Text] [Related]
13. When nonshivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia). Nespolo RF; Bacigalupe LD; Rezende EL; Bozinovic F Physiol Biochem Zool; 2001; 74(3):325-32. PubMed ID: 11331504 [TBL] [Abstract][Full Text] [Related]
14. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts. Hadamová M; Gvoždík L Physiol Biochem Zool; 2011; 84(2):166-74. PubMed ID: 21460527 [TBL] [Abstract][Full Text] [Related]
15. Keeping your cool: thermoregulatory performance and plasticity in desert cricetid rodents. Ramirez RW; Riddell EA; Beissinger SR; Wolf BO J Exp Biol; 2022 Mar; 225(5):. PubMed ID: 35132993 [TBL] [Abstract][Full Text] [Related]
16. Evaporative water loss in seven species of fossorial rodents: Does effect of degree of fossoriality and sociality exist? Luna F; Šumbera R; Okrouhlík J; Mladěnková N; Antenucci CD J Therm Biol; 2020 Apr; 89():102564. PubMed ID: 32364971 [TBL] [Abstract][Full Text] [Related]
17. Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration. Cryan PM; Wolf BO J Exp Biol; 2003 Oct; 206(Pt 19):3381-90. PubMed ID: 12939370 [TBL] [Abstract][Full Text] [Related]
18. Seasonal shifts in the thermal biology of the lizard Liolaemus tandiliensis (Squamata, Liolaemidae). Stellatelli OA; Villalba A; Block C; Vega LE; Dajil JE; Cruz FB J Therm Biol; 2018 Apr; 73():61-70. PubMed ID: 29549992 [TBL] [Abstract][Full Text] [Related]
19. Adaptive seasonal shifts in the thermal preferences of the lizard Iberolacerta galani (Squamata, Lacertidae). Ortega Z; Mencía A; Pérez-Mellado V J Therm Biol; 2016 Dec; 62(Pt A):1-6. PubMed ID: 27839544 [TBL] [Abstract][Full Text] [Related]
20. Variation in the thermal parameters of Odontophrynus occidentalis in the Monte desert, Argentina: response to the environmental constraints. Sanabria EA; Quiroga LB; Martino AL J Exp Zool A Ecol Genet Physiol; 2012 Mar; 317(3):185-93. PubMed ID: 22311743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]