These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. Berglund K; Clissold K; Li HE; Wen L; Park SY; Gleixner J; Klein ME; Lu D; Barter JW; Rossi MA; Augustine GJ; Yin HH; Hochgeschwender U Proc Natl Acad Sci U S A; 2016 Jan; 113(3):E358-67. PubMed ID: 26733686 [TBL] [Abstract][Full Text] [Related]
4. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons. Berglund K; Birkner E; Augustine GJ; Hochgeschwender U PLoS One; 2013; 8(3):e59759. PubMed ID: 23544095 [TBL] [Abstract][Full Text] [Related]
5. Defining parameters of specificity for bioluminescent optogenetic activation of neurons using in vitro multi electrode arrays (MEA). Prakash M; Medendorp WE; Hochgeschwender U J Neurosci Res; 2020 Mar; 98(3):437-447. PubMed ID: 30152529 [TBL] [Abstract][Full Text] [Related]
6. Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin. Ikefuama EC; Kendziorski GE; Anderson K; Shafau L; Prakash M; Hochgeschwender U; Petersen ED Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361784 [TBL] [Abstract][Full Text] [Related]
7. Combined Optogenetic and Chemogenetic Control of Neurons. Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125 [TBL] [Abstract][Full Text] [Related]
8. Non-invasive activation of optogenetic actuators. Birkner E; Berglund K; Klein ME; Augustine GJ; Hochgeschwender U Proc SPIE Int Soc Opt Eng; 2014 Feb; 8928():. PubMed ID: 27965518 [TBL] [Abstract][Full Text] [Related]
9. The BioLuminescent-OptoGenetic in vivo response to coelenterazine is proportional, sensitive, and specific in neocortex. Gomez-Ramirez M; More AI; Friedman NG; Hochgeschwender U; Moore CI J Neurosci Res; 2020 Mar; 98(3):471-480. PubMed ID: 31544973 [TBL] [Abstract][Full Text] [Related]
10. Extending the Time Domain of Neuronal Silencing with Cryptophyte Anion Channelrhodopsins. Govorunova EG; Sineshchekov OA; Hemmati R; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL eNeuro; 2018; 5(3):. PubMed ID: 30027111 [TBL] [Abstract][Full Text] [Related]
14. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Berndt A; Lee SY; Wietek J; Ramakrishnan C; Steinberg EE; Rashid AJ; Kim H; Park S; Santoro A; Frankland PW; Iyer SM; Pak S; Ährlund-Richter S; Delp SL; Malenka RC; Josselyn SA; Carlén M; Hegemann P; Deisseroth K Proc Natl Acad Sci U S A; 2016 Jan; 113(4):822-9. PubMed ID: 26699459 [TBL] [Abstract][Full Text] [Related]
15. Improved trafficking and expression of luminopsins for more efficient optical and pharmacological control of neuronal activity. Zhang JY; Tung JK; Wang Z; Yu SP; Gross RE; Wei L; Berglund K J Neurosci Res; 2020 Mar; 98(3):481-490. PubMed ID: 31670406 [TBL] [Abstract][Full Text] [Related]
16. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Mahn M; Gibor L; Patil P; Cohen-Kashi Malina K; Oring S; Printz Y; Levy R; Lampl I; Yizhar O Nat Commun; 2018 Oct; 9(1):4125. PubMed ID: 30297821 [TBL] [Abstract][Full Text] [Related]