BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28862809)

  • 1. Novel luciferase-opsin combinations for improved luminopsins.
    Park SY; Song SH; Palmateer B; Pal A; Petersen ED; Shall GP; Welchko RM; Ibata K; Miyawaki A; Augustine GJ; Hochgeschwender U
    J Neurosci Res; 2020 Mar; 98(3):410-421. PubMed ID: 28862809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step-function luminopsins for bimodal prolonged neuromodulation.
    Berglund K; Fernandez AM; Gutekunst CN; Hochgeschwender U; Gross RE
    J Neurosci Res; 2020 Mar; 98(3):422-436. PubMed ID: 30957296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.
    Berglund K; Clissold K; Li HE; Wen L; Park SY; Gleixner J; Klein ME; Lu D; Barter JW; Rossi MA; Augustine GJ; Yin HH; Hochgeschwender U
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):E358-67. PubMed ID: 26733686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.
    Berglund K; Birkner E; Augustine GJ; Hochgeschwender U
    PLoS One; 2013; 8(3):e59759. PubMed ID: 23544095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining parameters of specificity for bioluminescent optogenetic activation of neurons using in vitro multi electrode arrays (MEA).
    Prakash M; Medendorp WE; Hochgeschwender U
    J Neurosci Res; 2020 Mar; 98(3):437-447. PubMed ID: 30152529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin.
    Ikefuama EC; Kendziorski GE; Anderson K; Shafau L; Prakash M; Hochgeschwender U; Petersen ED
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive activation of optogenetic actuators.
    Birkner E; Berglund K; Klein ME; Augustine GJ; Hochgeschwender U
    Proc SPIE Int Soc Opt Eng; 2014 Feb; 8928():. PubMed ID: 27965518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The BioLuminescent-OptoGenetic in vivo response to coelenterazine is proportional, sensitive, and specific in neocortex.
    Gomez-Ramirez M; More AI; Friedman NG; Hochgeschwender U; Moore CI
    J Neurosci Res; 2020 Mar; 98(3):471-480. PubMed ID: 31544973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending the Time Domain of Neuronal Silencing with Cryptophyte Anion Channelrhodopsins.
    Govorunova EG; Sineshchekov OA; Hemmati R; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    eNeuro; 2018; 5(3):. PubMed ID: 30027111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioluminescence-Optogenetics: A Practical Guide.
    Stern MA; Skelton H; Fernandez AM; Gutekunst CN; Berglund K; Gross RE
    Methods Mol Biol; 2022; 2525():333-346. PubMed ID: 35836081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Expanding Family of Natural Anion Channelrhodopsins Reveals Large Variations in Kinetics, Conductance, and Spectral Sensitivity.
    Govorunova EG; Sineshchekov OA; Rodarte EM; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    Sci Rep; 2017 Mar; 7():43358. PubMed ID: 28256618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory luminopsins: genetically-encoded bioluminescent opsins for versatile, scalable, and hardware-independent optogenetic inhibition.
    Tung JK; Gutekunst CA; Gross RE
    Sci Rep; 2015 Sep; 5():14366. PubMed ID: 26399324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.
    Berndt A; Lee SY; Wietek J; Ramakrishnan C; Steinberg EE; Rashid AJ; Kim H; Park S; Santoro A; Frankland PW; Iyer SM; Pak S; Ährlund-Richter S; Delp SL; Malenka RC; Josselyn SA; Carlén M; Hegemann P; Deisseroth K
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):822-9. PubMed ID: 26699459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved trafficking and expression of luminopsins for more efficient optical and pharmacological control of neuronal activity.
    Zhang JY; Tung JK; Wang Z; Yu SP; Gross RE; Wei L; Berglund K
    J Neurosci Res; 2020 Mar; 98(3):481-490. PubMed ID: 31670406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins.
    Mahn M; Gibor L; Patil P; Cohen-Kashi Malina K; Oring S; Printz Y; Levy R; Lampl I; Yizhar O
    Nat Commun; 2018 Oct; 9(1):4125. PubMed ID: 30297821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioluminescence-Optogenetics.
    Berglund K; Stern MA; Gross RE
    Adv Exp Med Biol; 2021; 1293():281-293. PubMed ID: 33398820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics.
    Bedbrook CN; Yang KK; Robinson JE; Mackey ED; Gradinaru V; Arnold FH
    Nat Methods; 2019 Nov; 16(11):1176-1184. PubMed ID: 31611694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silencing Neurons: Tools, Applications, and Experimental Constraints.
    Wiegert JS; Mahn M; Prigge M; Printz Y; Yizhar O
    Neuron; 2017 Aug; 95(3):504-529. PubMed ID: 28772120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient opto- and chemogenetic control in a single molecule driven by FRET-modified bioluminescence.
    Björefeldt A; Murphy J; Crespo EL; Lambert GG; Prakash M; Ikefuama EC; Friedman N; Brown TM; Lipscombe D; Moore CI; Hochgeschwender U; Shaner NC
    Neurophotonics; 2024 Apr; 11(2):021005. PubMed ID: 38450294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.