These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28862986)

  • 1. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.
    Rahaman MM; Ahsan MA; Gillani Z; Chen M
    J Integr Bioinform; 2017 Sep; 14(3):. PubMed ID: 28862986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting plant biomass accumulation from image-derived parameters.
    Chen D; Shi R; Pape JM; Neumann K; Arend D; Graner A; Chen M; Klukas C
    Gigascience; 2018 Feb; 7(2):1-13. PubMed ID: 29346559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method for non-destructive measurement of biomass, growth rates, vertical biomass distribution and dry matter content based on digital image analysis.
    Tackenberg O
    Ann Bot; 2007 Apr; 99(4):777-83. PubMed ID: 17353204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate inference of shoot biomass from high-throughput images of cereal plants.
    Golzarian MR; Frick RA; Rajendran K; Berger B; Roy S; Tester M; Lun DS
    Plant Methods; 2011 Feb; 7():2. PubMed ID: 21284859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting spatiotemporal biomass accumulation in barley under different water regimes using high-throughput image analysis.
    Neumann K; Klukas C; Friedel S; Rischbeck P; Chen D; Entzian A; Stein N; Graner A; Kilian B
    Plant Cell Environ; 2015 Oct; 38(10):1980-96. PubMed ID: 25689277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance.
    Joshi S; Thoday-Kennedy E; Daetwyler HD; Hayden M; Spangenberg G; Kant S
    PLoS One; 2021; 16(7):e0254908. PubMed ID: 34297757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis.
    Chen D; Neumann K; Friedel S; Kilian B; Chen M; Altmann T; Klukas C
    Plant Cell; 2014 Dec; 26(12):4636-55. PubMed ID: 25501589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput phenotyping of plant shoots.
    Berger B; de Regt B; Tester M
    Methods Mol Biol; 2012; 918():9-20. PubMed ID: 22893282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput shoot imaging to study drought responses.
    Berger B; Parent B; Tester M
    J Exp Bot; 2010 Aug; 61(13):3519-28. PubMed ID: 20660495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses.
    Xiang L; Nolan TM; Bao Y; Elmore M; Tuel T; Gai J; Shah D; Wang P; Huser NM; Hurd AM; McLaughlin SA; Howell SH; Walley JW; Yin Y; Tang L
    Plant J; 2021 Sep; 107(6):1837-1853. PubMed ID: 34216161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenomics based prediction of plant biomass and leaf area in wheat using machine learning approaches.
    Singh B; Kumar S; Elangovan A; Vasht D; Arya S; Duc NT; Swami P; Pawar GS; Raju D; Krishna H; Sathee L; Dalal M; Sahoo RN; Chinnusamy V
    Front Plant Sci; 2023; 14():1214801. PubMed ID: 37448870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf Count Aided Novel Framework for Rice (
    Vishal MK; Saluja R; Aggrawal D; Banerjee B; Raju D; Kumar S; Chinnusamy V; Sahoo RN; Adinarayana J
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive Plant Biomass Monitoring With High Spatio-Temporal Resolution
    Buxbaum N; Lieth JH; Earles M
    Front Plant Sci; 2022; 13():758818. PubMed ID: 35498682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HTPheno: an image analysis pipeline for high-throughput plant phenotyping.
    Hartmann A; Czauderna T; Hoffmann R; Stein N; Schreiber F
    BMC Bioinformatics; 2011 May; 12():148. PubMed ID: 21569390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Phenotyping in Plant Stress Response: Methods and Potential Applications to Polyamine Field.
    Marko D; Briglia N; Summerer S; Petrozza A; Cellini F; Iannacone R
    Methods Mol Biol; 2018; 1694():373-388. PubMed ID: 29080181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UAV Image-Based Crop Growth Analysis of 3D-Reconstructed Crop Canopies.
    Nielsen KME; Duddu HSN; Bett KE; Shirtliffe SJ
    Plants (Basel); 2022 Oct; 11(20):. PubMed ID: 36297713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress.
    Correia PMP; Cairo Westergaard J; Bernardes da Silva A; Roitsch T; Carmo-Silva E; Marques da Silva J
    J Exp Bot; 2022 Sep; 73(15):5235-5251. PubMed ID: 35446418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OPIA: an open archive of plant images and related phenotypic traits.
    Cao Y; Tian D; Tang Z; Liu X; Hu W; Zhang Z; Song S
    Nucleic Acids Res; 2024 Jan; 52(D1):D1530-D1537. PubMed ID: 37930849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Straightforward High-Throughput Aboveground Phenotyping Platform for Small- to Medium-Sized Plants.
    Caldwell D; Iyer-Pascuzzi AS
    Methods Mol Biol; 2022; 2539():37-48. PubMed ID: 35895194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.