BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28863148)

  • 1. A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells.
    Greaves RB; Dietmann S; Smith A; Stepney S; Halley JD
    PLoS Comput Biol; 2017 Sep; 13(9):e1005713. PubMed ID: 28863148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organizing circuitry and emergent computation in mouse embryonic stem cells.
    Halley JD; Smith-Miles K; Winkler DA; Kalkan T; Huang S; Smith A
    Stem Cell Res; 2012 Mar; 8(2):324-33. PubMed ID: 22169460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common molecular logic determines embryonic stem cell self-renewal and reprogramming.
    Dunn SJ; Li MA; Carbognin E; Smith A; Martello G
    EMBO J; 2019 Jan; 38(1):. PubMed ID: 30482756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells.
    Xu H; Ang YS; Sevilla A; Lemischka IR; Ma'ayan A
    PLoS Comput Biol; 2014 Aug; 10(8):e1003777. PubMed ID: 25122140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem cell decision making and critical-like exploratory networks.
    Halley JD; Burden FR; Winkler DA
    Stem Cell Res; 2009 May; 2(3):165-77. PubMed ID: 19393588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Synthesis and Analysis of Switching Gene Regulatory Networks.
    Shavit Y; Yordanov B; Dunn SJ; Wintersteiger CM; Otani T; Hamadi Y; Livesey FJ; Kugler H
    Biosystems; 2016 Aug; 146():26-34. PubMed ID: 27178783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Cellular Differentiation and Reprogramming with Gene Regulatory Networks.
    Hartmann A; Ravichandran S; Del Sol A
    Methods Mol Biol; 2019; 1975():37-51. PubMed ID: 31062304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational inference of a genomic pluripotency signature in human and mouse stem cells.
    Kurum E; Benayoun BA; Malhotra A; George J; Ucar D
    Biol Direct; 2016 Sep; 11():47. PubMed ID: 27639379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Formal Reasoning to Uncover Molecular Programs of Self-Renewal.
    Dunn SJ
    Methods Mol Biol; 2019; 1975():79-105. PubMed ID: 31062306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Generalized Gene-Regulatory Network Model of Stem Cell Differentiation for Predicting Lineage Specifiers.
    Okawa S; Nicklas S; Zickenrott S; Schwamborn JC; Del Sol A
    Stem Cell Reports; 2016 Sep; 7(3):307-315. PubMed ID: 27546532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.
    Dowell KG; Simons AK; Bai H; Kell B; Wang ZZ; Yun K; Hibbs MA
    Stem Cells; 2014 May; 32(5):1161-72. PubMed ID: 24307629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells.
    Jung M; Peterson H; Chavez L; Kahlem P; Lehrach H; Vilo J; Adjaye J
    PLoS One; 2010 May; 5(5):e10709. PubMed ID: 20505756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic and genomic regulatory elements reveal aspects of
    King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA
    Elife; 2020 Feb; 9():. PubMed ID: 32043966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling signaling-dependent pluripotency with Boolean logic to predict cell fate transitions.
    Yachie-Kinoshita A; Onishi K; Ostblom J; Langley MA; Posfai E; Rossant J; Zandstra PW
    Mol Syst Biol; 2018 Jan; 14(1):e7952. PubMed ID: 29378814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct SoxB1 networks are required for naïve and primed pluripotency.
    Corsinotti A; Wong FC; Tatar T; Szczerbinska I; Halbritter F; Colby D; Gogolok S; Pantier R; Liggat K; Mirfazeli ES; Hall-Ponsele E; Mullin NP; Wilson V; Chambers I
    Elife; 2017 Dec; 6():. PubMed ID: 29256862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamical model of genetic networks for cell differentiation.
    Villani M; Barbieri A; Serra R
    PLoS One; 2011 Mar; 6(3):e17703. PubMed ID: 21464974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback control of pluripotency in embryonic stem cells: Signaling, transcription and epigenetics.
    Papatsenko D; Waghray A; Lemischka IR
    Stem Cell Res; 2018 May; 29():180-188. PubMed ID: 29727814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.