These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 28863234)
1. Biodegradable Microparticles for Simultaneous Detection of Counterfeit and Deteriorated Edible Products. Rehor I; van Vreeswijk S; Vermonden T; Hennink WE; Kegel WK; Eral HB Small; 2017 Oct; 13(39):. PubMed ID: 28863234 [TBL] [Abstract][Full Text] [Related]
2. Using stop-flow lithography to produce opaque microparticles: synthesis and modeling. Suh SK; Bong KW; Hatton TA; Doyle PS Langmuir; 2011 Nov; 27(22):13813-9. PubMed ID: 21942375 [TBL] [Abstract][Full Text] [Related]
3. A biodegradable and biocompatible drug-delivery system based on polyoxalate microparticles. Lee E; Kim S; Seong K; Park H; Seo H; Khang G; Lee D J Biomater Sci Polym Ed; 2011; 22(13):1683-94. PubMed ID: 20699060 [TBL] [Abstract][Full Text] [Related]
4. Insulin particle formation in supersaturated aqueous solutions of poly(ethylene glycol). Bromberg L; Rashba-Step J; Scott T Biophys J; 2005 Nov; 89(5):3424-33. PubMed ID: 16254391 [TBL] [Abstract][Full Text] [Related]
5. Effect of Formulation and Process Parameters on Chitosan Microparticles Prepared by an Emulsion Crosslinking Technique. Rodriguez LB; Avalos A; Chiaia N; Nadarajah A AAPS PharmSciTech; 2017 May; 18(4):1084-1094. PubMed ID: 27995463 [TBL] [Abstract][Full Text] [Related]
6. Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs. Fei J; Liu R Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():657-62. PubMed ID: 27040262 [TBL] [Abstract][Full Text] [Related]
7. Spray-drying enteric polymers from aqueous solutions: a novel, economic, and environmentally friendly approach to produce pH-responsive microparticles. Alhnan MA; Kidia E; Basit AW Eur J Pharm Biopharm; 2011 Oct; 79(2):432-9. PubMed ID: 21439376 [TBL] [Abstract][Full Text] [Related]
8. Preparation of uniform biodegradable microparticles using laser ablation. Xie B Int J Pharm; 2006 Nov; 325(1-2):194-6. PubMed ID: 16901662 [TBL] [Abstract][Full Text] [Related]
9. Microparticles for drug delivery based on functional polycaprolactones with enhanced degradability: loading of hydrophilic and hydrophobic active compounds. Vaida C; Mela P; Kunna K; Sternberg K; Keul H; Möller M Macromol Biosci; 2010 Aug; 10(8):925-33. PubMed ID: 20572270 [TBL] [Abstract][Full Text] [Related]
10. [Relationships between manufacturing parameters and pharmaceutical-technological requirements of biodegradable microparticles. 2. Preparation of injectable microparticles in biodegradable polyester]. Thoma K; Schlütermann B Pharmazie; 1992 Feb; 47(2):115-9. PubMed ID: 1635917 [TBL] [Abstract][Full Text] [Related]
11. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. Lu L; Yaszemski MJ; Mikos AG J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S82-91. PubMed ID: 11314800 [TBL] [Abstract][Full Text] [Related]
12. Branched multifunctional polyether polyketals: variation of ketal group structure enables unprecedented control over polymer degradation in solution and within cells. Shenoi RA; Narayanannair JK; Hamilton JL; Lai BF; Horte S; Kainthan RK; Varghese JP; Rajeev KG; Manoharan M; Kizhakkedathu JN J Am Chem Soc; 2012 Sep; 134(36):14945-57. PubMed ID: 22906064 [TBL] [Abstract][Full Text] [Related]
13. Controlling degradation of acid-hydrolyzable pluronic hydrogels by physical entrapment of poly(lactic acid-co-glycolic acid) microspheres. Lee JB; Chun KW; Yoon JJ; Park TG Macromol Biosci; 2004 Oct; 4(10):957-62. PubMed ID: 15487026 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of polymeric microparticles for drug delivery by soft lithography. Guan J; Ferrell N; James Lee L; Hansford DJ Biomaterials; 2006 Jul; 27(21):4034-41. PubMed ID: 16574217 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of modified carrageenan microparticles for the removal of pharmaceuticals from aqueous solutions. Nanaki SG; Kyzas GZ; Tzereme A; Papageorgiou M; Kostoglou M; Bikiaris DN; Lambropoulou DA Colloids Surf B Biointerfaces; 2015 Mar; 127():256-65. PubMed ID: 25687096 [TBL] [Abstract][Full Text] [Related]
16. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs. Wen Y; Gallego MR; Nielsen LF; Jorgensen L; Møller EH; Nielsen HM Eur J Pharm Biopharm; 2013 Sep; 85(1):87-98. PubMed ID: 23958320 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. Kauffman KJ; Do C; Sharma S; Gallovic MD; Bachelder EM; Ainslie KM ACS Appl Mater Interfaces; 2012 Aug; 4(8):4149-55. PubMed ID: 22833690 [TBL] [Abstract][Full Text] [Related]
18. Fluphenazine release from biodegradable microparticles: characterization and modelling of release. Dunne MM; Ramtoola Z; Corrigan OI J Microencapsul; 2009 Aug; 26(5):403-10. PubMed ID: 18785053 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of porous PEG microgels using CaCO3 microspheres as hard templates. Behra M; Schmidt S; Hartmann J; Volodkin DV; Hartmann L Macromol Rapid Commun; 2012 Jun; 33(12):1049-54. PubMed ID: 22392732 [TBL] [Abstract][Full Text] [Related]
20. Self-gelling hydrogels based on oppositely charged dextran microspheres. Van Tomme SR; van Steenbergen MJ; De Smedt SC; van Nostrum CF; Hennink WE Biomaterials; 2005 May; 26(14):2129-35. PubMed ID: 15576188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]