These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28863290)

  • 1. Zinc-arsenic interactions in soil: Solubility, toxicity and uptake.
    Kader M; Lamb DT; Wang L; Megharaj M; Naidu R
    Chemosphere; 2017 Nov; 187():357-367. PubMed ID: 28863290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper interactions on arsenic bioavailability and phytotoxicity in soil.
    Kader M; Lamb DT; Wang L; Megharaj M; Naidu R
    Ecotoxicol Environ Saf; 2018 Feb; 148():738-746. PubMed ID: 29179146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-water chemistry explains zinc phytotoxicity in soil.
    Kader M; Lamb DT; Correll R; Megharaj M; Naidu R
    Ecotoxicol Environ Saf; 2015 Dec; 122():252-9. PubMed ID: 26283289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting plant uptake and toxicity of lead (Pb) in long-term contaminated soils from derived transfer functions.
    Kader M; Lamb DT; Mahbub KR; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15460-70. PubMed ID: 27117154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of arsenic, copper, and zinc in soil-plant system: Partition, uptake and phytotoxicity.
    Gong B; He E; Qiu H; Van Gestel CAM; Romero-Freire A; Zhao L; Xu X; Cao X
    Sci Total Environ; 2020 Nov; 745():140926. PubMed ID: 32712499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile.
    Bustos V; Mondaca P; Verdejo J; Sauvé S; Gaete H; Celis-Diez JL; Neaman A
    Ecotoxicol Environ Saf; 2015 Dec; 122():448-54. PubMed ID: 26398238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecotoxicity of pore water in soils developed on historical arsenic mine dumps: The effects of forest litter.
    Dradrach A; Szopka K; Karczewska A
    Ecotoxicol Environ Saf; 2019 Oct; 181():202-213. PubMed ID: 31195229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil.
    Lamb DT; Kader M; Wang L; Choppala G; Rahman MM; Megharaj M; Naidu R
    Environ Sci Technol; 2016 Dec; 50(23):13062-13069. PubMed ID: 27797507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions and Toxicity of Cu-Zn mixtures to Hordeum vulgare in Different Soils Can Be Rationalized with Bioavailability-Based Prediction Models.
    Qiu H; Versieren L; Rangel GG; Smolders E
    Environ Sci Technol; 2016 Jan; 50(2):1014-22. PubMed ID: 26649642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation of zinc in contaminated soils.
    Stephan CH; Courchesne F; Hendershot WH; McGrath SP; Chaudri AM; Sappin-Didier V; Sauvé S
    Environ Pollut; 2008 Sep; 155(2):208-16. PubMed ID: 18222022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive toxicity of zinc and arsenate on barley (Hordeum vulgare) root elongation.
    Guzmán-Rangel G; Versieren L; Qiu H; Smolders E
    Environ Toxicol Chem; 2017 Jun; 36(6):1556-1562. PubMed ID: 27808449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of arsenic species on the growth and arsenic accumulation in Cucumis sativus.
    Hong SH; Choi SA; Lee MH; Min BR; Yoon C; Yoon H; Cho KS
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():41-7. PubMed ID: 21069431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal-arsenic polluted soil.
    González V; García I; Del Moral F; Simón M
    J Hazard Mater; 2012 Feb; 205-206():72-80. PubMed ID: 22226638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of copper and zinc in mining soils.
    Smith BA; Greenberg B; Stephenson GL
    Arch Environ Contam Toxicol; 2012 Jan; 62(1):1-12. PubMed ID: 21594672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of zinc phytoavailability by diffusive gradients in thin films.
    Sonmez O; Pierzynski GM
    Environ Toxicol Chem; 2005 Apr; 24(4):934-41. PubMed ID: 15839569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter.
    Moghaddasi S; Fotovat A; Khoshgoftarmanesh AH; Karimzadeh F; Khazaei HR; Khorassani R
    Ecotoxicol Environ Saf; 2017 Oct; 144():543-551. PubMed ID: 28688355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Zinc Carbonate Spiking to Obtain Phytotoxicity Thresholds Comparable to Those in Field-Collected Soils.
    Grigorita G; Neaman A; Brykova R; Brykov VA; Morev DV; Ginocchio R; Paltseva AA; Vidal K; Navarro-Villarroel C; Dovletyarova EA
    Environ Toxicol Chem; 2020 Sep; 39(9):1790-1796. PubMed ID: 32593201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.