These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28863400)

  • 1. Looped ends versus open ends braided stent: A comparison of the mechanical behaviour using analytical and numerical methods.
    Shanahan C; Tiernan P; Tofail SAM
    J Mech Behav Biomed Mater; 2017 Nov; 75():581-591. PubMed ID: 28863400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of computational modelling techniques for braided stent analysis.
    Kelly N; McGrath DJ; Sweeney CA; Kurtenbach K; Grogan JA; Jockenhoevel S; O'Brien BJ; Bruzzi M; McHugh PE
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1334-1344. PubMed ID: 31502888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents.
    Nuutinen JP; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2003; 14(7):677-87. PubMed ID: 12903736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element investigation on design parameters of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2021 Mar; 115():104305. PubMed ID: 33454463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radial force measurements in carotid stents: influence of stent design and length of the lesion.
    Voûte MT; Hendriks JM; van Laanen JH; Pattynama PM; Muhs BE; Poldermans D; Verhagen HJ
    J Vasc Interv Radiol; 2011 May; 22(5):661-6. PubMed ID: 21514520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-objective design optimization of bioresorbable braided stents.
    Carbonaro D; Lucchetti A; Audenino AL; Gries T; Vaughan TJ; Chiastra C
    Comput Methods Programs Biomed; 2023 Dec; 242():107781. PubMed ID: 37683458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2020 Mar; 103():103549. PubMed ID: 31783281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of the mechanical performance of self-expanding endovascular stents made with new nickel-free superelastic β-titanium alloys.
    Jia T; Guines D; Laillé D; Leotoing L; Gloriant T
    J Mech Behav Biomed Mater; 2024 Mar; 151():106345. PubMed ID: 38215658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of braided venous stents - Effect of design features and device-tissue interaction on stent performance.
    Ubachs R; van der Sluis O; Smith S; Mertens J
    J Mech Behav Biomed Mater; 2023 Jun; 142():105857. PubMed ID: 37099918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified Theoretical Model Predicts Radial Support Capacity of Polymer Braided Stents.
    Hu X; Liu Q; Chen L; Cheng J; Liu M; Wu G; Sun R; Zhao G; Yang J; Ni Z
    Comput Methods Programs Biomed; 2024 Apr; 246():108063. PubMed ID: 38354577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of NiTi self-expandable heart valve stent.
    Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigations of the mechanical properties of a braided non-vascular stent design using finite element method.
    Ni XY; Pan CW; Gangadhara Prusty B
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(10):1117-1125. PubMed ID: 24867297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning.
    Kumar A; Bhatnagar N
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitinol stent design - understanding axial buckling.
    McGrath DJ; O Brien B; Bruzzi M; McHugh PE
    J Mech Behav Biomed Mater; 2014 Dec; 40():252-263. PubMed ID: 25255420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Finite element analysis for compression and expansion behavior of magnesium stent].
    Chen H; Liu X; Yuan G; Zhang L; Li Z; Luo Q; Lin F
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 May; 38(3):161-4, 176. PubMed ID: 25241506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A numerical corrosion-fatigue model for biodegradable Mg alloy stents.
    Shen Z; Zhao M; Zhou X; Yang H; Liu J; Guo H; Zheng Y; Yang JA
    Acta Biomater; 2019 Oct; 97():671-680. PubMed ID: 31394294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual optimization of self-expandable braided wire stents.
    De Beule M; Van Cauter S; Mortier P; Van Loo D; Van Impe R; Verdonck P; Verhegghe B
    Med Eng Phys; 2009 May; 31(4):448-53. PubMed ID: 19117791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of the radial and axial force of self-expanding esophageal stents.
    Hirdes MM; Vleggaar FP; de Beule M; Siersema PD
    Endoscopy; 2013 Dec; 45(12):997-1005. PubMed ID: 24288220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Covered Laser-cut and Braided Respiratory Stents: From Bench to Pre-Clinical Testing.
    Thiebes AL; McGrath DJ; Kelly N; Sweeney CA; Kurtenbach K; Gesché VN; Clauser J; O'Brien B; Bruzzi M; McHugh PE; Jockenhoevel S; Cornelissen CG
    Ann Biomed Eng; 2019 Aug; 47(8):1738-1747. PubMed ID: 31044340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.