These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 28863575)

  • 1. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.
    Chevillotte F; Perrot C
    J Acoust Soc Am; 2017 Aug; 142(2):1130. PubMed ID: 28863575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A direct link between microstructure and acoustical macro-behavior of real double porosity foams.
    Chevillotte F; Perrot C; Guillon E
    J Acoust Soc Am; 2013 Dec; 134(6):4681. PubMed ID: 25669280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.
    Zieliński TG
    J Acoust Soc Am; 2015 Apr; 137(4):1790-801. PubMed ID: 25920832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams.
    Chevillotte F; Perrot C; Panneton R
    J Acoust Soc Am; 2010 Oct; 128(4):1766-76. PubMed ID: 20968350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound absorption of cellular metals with semiopen cells.
    Lu TJ; Chen F; He D
    J Acoust Soc Am; 2000 Oct; 108(4):1697-709. PubMed ID: 11051497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation.
    Jin W; Liu J; Wang Z; Wang Y; Cao Z; Liu Y; Zhu X
    Materials (Basel); 2015 Nov; 8(11):7511-7518. PubMed ID: 28793653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study.
    Langlois V; Kaddami A; Pitois O; Perrot C
    J Acoust Soc Am; 2020 Sep; 148(3):1767. PubMed ID: 33003872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-up approach for microstructure optimization of sound absorbing materials.
    Perrot C; Chevillotte F; Panneton R
    J Acoust Soc Am; 2008 Aug; 124(2):940-8. PubMed ID: 18681586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray Computed Tomography for Characterization of Expanded Polystyrene (EPS) Foam.
    Meftah R; Van Stappen J; Berger S; Jacqus G; Laluet JY; Guering PH; Van Hoorebeke L; Cnudde V
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Mechanical and Sound Absorption Properties of Open Cell Silicone Rubber Foam with NaCl as the Pore-Forming Agent.
    Peng L; Lei L; Liu Y; Du L
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33401620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid foam templating - A route to tailor-made polymer foams.
    Andrieux S; Quell A; Stubenrauch C; Drenckhan W
    Adv Colloid Interface Sci; 2018 Jun; 256():276-290. PubMed ID: 29728156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric.
    Atiénzar-Navarro R; Del Rey R; Jesús A; Sánchez-Morcillo VJ; Picó R
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32050724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound absorption by metallic foam after triaxial hydrostatic compression.
    Cops MJ; McDaniel JG; Magliula EA; Bamford DJ; Bliefnick J
    J Acoust Soc Am; 2020 May; 147(5):3594. PubMed ID: 32486806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the irregular microgeometry of polyurethane foam on the macroscopic acoustic behavior predicted by a unit-cell model.
    Doutres O; Ouisse M; Atalla N; Ichchou M
    J Acoust Soc Am; 2014 Oct; 136(4):1666-81. PubMed ID: 25324070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrusion Foaming of Lightweight Polystyrene Composite Foams with Controllable Cellular Structure for Sound Absorption Application.
    Fei Y; Fang W; Zhong M; Jin J; Fan P; Yang J; Fei Z; Xu L; Chen F
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation and uncertainty analysis of fluid-acoustic parameters of porous materials using microstructural properties.
    Lee HR; Yang SS; Lee JW; Kang YJ
    J Acoust Soc Am; 2020 Jul; 148(1):308. PubMed ID: 32752744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading.
    Huang L; Wu X; Zeng S; Li X
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional reconstruction of a random fibrous medium: Geometry, transport, and sound absorbing properties.
    Luu HT; Perrot C; Monchiet V; Panneton R
    J Acoust Soc Am; 2017 Jun; 141(6):4768. PubMed ID: 28679240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Pore Size Variation on Thermal Conductivity of Open-Porous Foams.
    Skibinski J; Cwieka K; Haj Ibrahim S; Wejrzanowski T
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31238492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore structure and pertinent physical properties of nanofibrillated cellulose (NFC)-based foam materials.
    Li J; Cheng R; Xiu H; Zhang M; Liu Q; Song T; Dong H; Yao B; Zhang X; Kozliak E; Ji Y
    Carbohydr Polym; 2018 Dec; 201():141-150. PubMed ID: 30241805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.