These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 28863603)
1. Modeling of the acoustic radiation force in elastography. Prieur F; Sapozhnikov OA J Acoust Soc Am; 2017 Aug; 142(2):947. PubMed ID: 28863603 [TBL] [Abstract][Full Text] [Related]
2. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study. Guo M; Abbott D; Lu M; Liu H Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475 [TBL] [Abstract][Full Text] [Related]
3. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography. Mellema DC; Song P; Kinnick RR; Urban MW; Greenleaf JF; Manduca A; Chen S IEEE Trans Med Imaging; 2016 Sep; 35(9):2098-106. PubMed ID: 27076352 [TBL] [Abstract][Full Text] [Related]
4. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage. Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407 [TBL] [Abstract][Full Text] [Related]
5. A diffraction correction for storage and loss moduli imaging using radiation force based elastography. Budelli E; Brum J; Bernal M; Deffieux T; Tanter M; Lema P; Negreira C; Gennisson JL Phys Med Biol; 2017 Jan; 62(1):91-106. PubMed ID: 27973354 [TBL] [Abstract][Full Text] [Related]
6. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves. Mitri FG Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472 [TBL] [Abstract][Full Text] [Related]
7. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media. Palmeri ML; Qiang B; Chen S; Urban MW IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):78-92. PubMed ID: 28026760 [TBL] [Abstract][Full Text] [Related]
8. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams. Nabavizadeh A; Song P; Chen S; Greenleaf JF; Urban MW IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):647-62. PubMed ID: 25881343 [TBL] [Abstract][Full Text] [Related]
9. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force. Lee KH; Szajewski BA; Hah Z; Parker KJ; Maniatty AM Int J Numer Method Biomed Eng; 2012; 28(6-7):678-96. PubMed ID: 25364845 [TBL] [Abstract][Full Text] [Related]
10. Building an open-source simulation platform of acoustic radiation force-based breast elastography. Wang Y; Peng B; Jiang J Phys Med Biol; 2017 Mar; 62(5):1949-1968. PubMed ID: 28075330 [TBL] [Abstract][Full Text] [Related]
11. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control. Bell MA; Kumar S; Kuo L; Sen HT; Iordachita I; Kazanzides P IEEE Trans Biomed Eng; 2016 Jul; 63(7):1517-24. PubMed ID: 26552071 [TBL] [Abstract][Full Text] [Related]
12. On the effects of reflected waves in transient shear wave elastography. Deffieux T; Gennisson JL; Bercoff J; Tanter M IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866 [TBL] [Abstract][Full Text] [Related]
13. Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts. Ouared A; Montagnon E; Cloutier G Phys Med Biol; 2015 Oct; 60(20):8161-85. PubMed ID: 26439616 [TBL] [Abstract][Full Text] [Related]
14. Comparison of strain elastography, point shear wave elastography using acoustic radiation force impulse imaging and 2D-shear wave elastography for the differentiation of thyroid nodules. Kyriakidou G; Friedrich-Rust M; Bon D; Sircar I; Schrecker C; Bogdanou D; Herrmann E; Bojunga J PLoS One; 2018; 13(9):e0204095. PubMed ID: 30222755 [TBL] [Abstract][Full Text] [Related]
15. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere. Mitri FG Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103 [TBL] [Abstract][Full Text] [Related]
16. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime. Lee J Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757 [TBL] [Abstract][Full Text] [Related]
17. Acoustic Radiation Force of a Quasi-Gaussian Beam on an Elastic Sphere in a Fluid. Nikolaeva AV; Sapozhnikov OA; Bailey MR IEEE Int Ultrason Symp; 2016 Sep; 2016():. PubMed ID: 28593033 [TBL] [Abstract][Full Text] [Related]
18. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease. Gerber L; Kasper D; Fitting D; Knop V; Vermehren A; Sprinzl K; Hansmann ML; Herrmann E; Bojunga J; Albert J; Sarrazin C; Zeuzem S; Friedrich-Rust M Ultrasound Med Biol; 2015 Sep; 41(9):2350-9. PubMed ID: 26116161 [TBL] [Abstract][Full Text] [Related]
20. Miniaturization of External Mechanical Vibration for Shear Wave Elastography Imaging. Donk FV; Yang H; Anthony BW Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3464-3467. PubMed ID: 30441129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]