These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 28863607)
21. Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds. Mendelsohn AH; Zhang Z J Acoust Soc Am; 2011 Nov; 130(5):2961-8. PubMed ID: 22087924 [TBL] [Abstract][Full Text] [Related]
22. Vocal fold contact pressure in a three-dimensional body-cover phonation model. Zhang Z J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600 [TBL] [Abstract][Full Text] [Related]
23. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. Tao C; Zhang Y; Hottinger DG; Jiang JJ J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863 [TBL] [Abstract][Full Text] [Related]
24. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis. Lucero JC; Koenig LL; Lourenço KG; Ruty N; Pelorson X J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520 [TBL] [Abstract][Full Text] [Related]
25. Experimental study of vocal-ventricular fold oscillations in voice production. Matsumoto T; Kanaya M; Ishimura K; Tokuda IT J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158 [TBL] [Abstract][Full Text] [Related]
26. Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study. Granqvist S; Simberg S; Hertegård S; Holmqvist S; Larsson H; Lindestad PÅ; Södersten M; Hammarberg B Logoped Phoniatr Vocol; 2015 Oct; 40(3):113-21. PubMed ID: 24865620 [TBL] [Abstract][Full Text] [Related]
27. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. Zhang Z J Acoust Soc Am; 2010 Apr; 127(4):2554-62. PubMed ID: 20370037 [TBL] [Abstract][Full Text] [Related]
28. Verification of two minimally invasive methods for the estimation of the contact pressure in human vocal folds during phonation. Chen LJ; Mongeau L J Acoust Soc Am; 2011 Sep; 130(3):1618-27. PubMed ID: 21895099 [TBL] [Abstract][Full Text] [Related]
29. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges. Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980 [TBL] [Abstract][Full Text] [Related]
30. Vocal fold dynamics for frequency change. Hollien H J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331 [TBL] [Abstract][Full Text] [Related]
31. Experimental validation of a three-dimensional reduced-order continuum model of phonation. Farahani MH; Zhang Z J Acoust Soc Am; 2016 Aug; 140(2):EL172. PubMed ID: 27586776 [TBL] [Abstract][Full Text] [Related]
32. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds. Ikeda T; Matsuzaki Y; Aomatsu T J Biomech Eng; 2001 Dec; 123(6):571-9. PubMed ID: 11783728 [TBL] [Abstract][Full Text] [Related]
33. Effect of the ventricular folds in a synthetic larynx model. Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747 [TBL] [Abstract][Full Text] [Related]
34. Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models. Zhang Z; Kreiman J; Gerratt BR; Garellek M J Acoust Soc Am; 2013 Jan; 133(1):453-62. PubMed ID: 23297917 [TBL] [Abstract][Full Text] [Related]
35. Modal response of a computational vocal fold model with a substrate layer of adipose tissue. Jones CL; Achuthan A; Erath BD J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044 [TBL] [Abstract][Full Text] [Related]
36. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model. Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852 [TBL] [Abstract][Full Text] [Related]
37. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model. Tao C; Jiang JJ J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805 [TBL] [Abstract][Full Text] [Related]
38. Optimized transformation of the glottal motion into a mechanical model. Triep M; Brücker C; Stingl M; Döllinger M Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384 [TBL] [Abstract][Full Text] [Related]
39. Vocal instabilities in a three-dimensional body-cover phonation model. Zhang Z J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612 [TBL] [Abstract][Full Text] [Related]