These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28863819)

  • 1. Differential Effects of Sterols on Ion Channels: Stereospecific Binding vs Stereospecific Response.
    Barbera N; Ayee MAA; Akpa BS; Levitan I
    Curr Top Membr; 2017; 80():25-50. PubMed ID: 28863819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative docking analysis of cholesterol analogs to ion channels to discriminate between stereospecific binding vs. stereospecific response.
    Barbera NA; Minke B; Levitan I
    Channels (Austin); 2019 Dec; 13(1):136-146. PubMed ID: 31033379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of cholesterol and analogs to modulate BK channels points to direct sterol-channel protein interactions.
    Bukiya AN; Belani JD; Rychnovsky S; Dopico AM
    J Gen Physiol; 2011 Jan; 137(1):93-110. PubMed ID: 21149543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral Specificity of Cholesterol Orientation Within Cholesterol Binding Sites in Inwardly Rectifying K
    Barbera N; Levitan I
    Adv Exp Med Biol; 2019; 1115():77-95. PubMed ID: 30649756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive boost of a K
    Iwamoto M; Oiki S
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):13117-13122. PubMed ID: 30509986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol.
    D'Avanzo N; Hyrc K; Enkvetchakul D; Covey DF; Nichols CG
    PLoS One; 2011 Apr; 6(4):e19393. PubMed ID: 21559361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy.
    Huang W; Zhang Z; Han X; Tang J; Wang J; Dong S; Wang E
    Biophys J; 2002 Dec; 83(6):3245-55. PubMed ID: 12496093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the target of membrane sterols on voltage-gated potassium channels.
    Zakany F; Pap P; Papp F; Kovacs T; Nagy P; Peter M; Szente L; Panyi G; Varga Z
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Mar; 1864(3):312-325. PubMed ID: 30553843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective interactions between local anesthetics and ion channels.
    Valenzuela C; Moreno C; de la Cruz A; Macías Á; Prieto Á; González T
    Chirality; 2012 Nov; 24(11):944-50. PubMed ID: 22674834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights Into the Molecular Requirements for Cholesterol Binding to Ion Channels.
    Rosenhouse-Dantsker A
    Curr Top Membr; 2017; 80():187-208. PubMed ID: 28863816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphotericin B channels in the bacterial membrane: role of sterol and temperature.
    Venegas B; González-Damián J; Celis H; Ortega-Blake I
    Biophys J; 2003 Oct; 85(4):2323-32. PubMed ID: 14507696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol regulation of mechanosensitive ion channels.
    Beverley KM; Levitan I
    Front Cell Dev Biol; 2024; 12():1352259. PubMed ID: 38333595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol binding to ion channels.
    Levitan I; Singh DK; Rosenhouse-Dantsker A
    Front Physiol; 2014; 5():65. PubMed ID: 24616704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterol Regulation of Voltage-Gated K
    Balajthy A; Hajdu P; Panyi G; Varga Z
    Curr Top Membr; 2017; 80():255-292. PubMed ID: 28863820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel cholesterol-binding regions in Kir2 channels.
    Rosenhouse-Dantsker A; Noskov S; Durdagi S; Logothetis DE; Levitan I
    J Biol Chem; 2013 Oct; 288(43):31154-64. PubMed ID: 24019518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirality Effect on Cholesterol Modulation of Protein Function.
    Belani JD
    Adv Exp Med Biol; 2019; 1115():3-19. PubMed ID: 30649753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual pattern of cholesterol-induced decoupling of residue-residue interactions of Kir2.2.
    Beverley KM; Barbera N; Levitan I
    J Struct Biol; 2024 Jun; 216(2):108091. PubMed ID: 38641256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site.
    Addona GH; Sandermann H; Kloczewiak MA; Miller KW
    Biochim Biophys Acta; 2003 Jan; 1609(2):177-82. PubMed ID: 12543379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the allosterism of acyl-CoA:cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies.
    Liu J; Chang CC; Westover EJ; Covey DF; Chang TY
    Biochem J; 2005 Oct; 391(Pt 2):389-97. PubMed ID: 15992359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol regulates prokaryotic Kir channel by direct binding to channel protein.
    Singh DK; Shentu TP; Enkvetchakul D; Levitan I
    Biochim Biophys Acta; 2011 Oct; 1808(10):2527-33. PubMed ID: 21798234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.