BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28863821)

  • 1. Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors.
    Di Scala C; Baier CJ; Evans LS; Williamson PTF; Fantini J; Barrantes FJ
    Curr Top Membr; 2017; 80():3-23. PubMed ID: 28863821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes.
    Fantini J; Di Scala C; Evans LS; Williamson PT; Barrantes FJ
    Sci Rep; 2016 Feb; 6():21907. PubMed ID: 26915987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor.
    Baier CJ; Fantini J; Barrantes FJ
    Sci Rep; 2011; 1():69. PubMed ID: 22355588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains.
    Fantini J; Di Scala C; Baier CJ; Barrantes FJ
    Chem Phys Lipids; 2016 Sep; 199():52-60. PubMed ID: 26987951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol-recognition motifs in the transmembrane domain of the tyrosine kinase receptor family: The case of TRKB.
    Cannarozzo C; Fred SM; Girych M; Biojone C; Enkavi G; Róg T; Vattulainen I; Casarotto PC; Castrén E
    Eur J Neurosci; 2021 May; 53(10):3311-3322. PubMed ID: 33825223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol sensing by the ABCG1 lipid transporter: Requirement of a CRAC motif in the final transmembrane domain.
    Sharpe LJ; Rao G; Jones PM; Glancey E; Aleidi SM; George AM; Brown AJ; Gelissen IC
    Biochim Biophys Acta; 2015 Jul; 1851(7):956-64. PubMed ID: 25732853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of cholesterol recognition (CARC/CRAC) mirror codes in the allosterism of the human organic cation transporter 2 (OCT2, SLC22A2).
    Sutter ML; Console L; Fahner AF; Samodelov SL; Gai Z; Ciarimboli G; Indiveri C; Kullak-Ublick GA; Visentin M
    Biochem Pharmacol; 2021 Dec; 194():114840. PubMed ID: 34774844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of cholesterol-recognition motifs of the plasma membrane Ca
    Delgado-Coello B; Luna-Reyes I; Méndez-Acevedo KM; Bravo-Martínez J; Montalvan-Sorrosa D; Mas-Oliva J
    J Bioenerg Biomembr; 2024 Jun; 56(3):205-219. PubMed ID: 38436904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane Interaction Characteristics of the RTX Toxins and the Cholesterol-Dependence of Their Cytolytic/Cytotoxic Activity.
    Ostolaza H; Amuategi J
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling and biological validation of novel non-steroidal ligands for the cholesterol recognition/interaction amino acid consensus (CRAC) motif of the mitochondrial translocator protein (TSPO).
    Midzak AS; Akula N; Rone MB; Papadopoulos V
    Pharmacol Res; 2015 Sep; 99():393-403. PubMed ID: 25936508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational comparison of a calcium-dependent jellyfish protein (apoaequorin) and calmodulin-cholesterol in short-term memory maintenance.
    Morrill GA; Kostellow AB; Gupta RK
    Neurosci Lett; 2017 Mar; 642():113-118. PubMed ID: 28159636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors.
    Jafurulla M; Tiwari S; Chattopadhyay A
    Biochem Biophys Res Commun; 2011 Jan; 404(1):569-73. PubMed ID: 21146498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes.
    Dreger M; Krauss M; Herrmann A; Hucho F
    Biochemistry; 1997 Jan; 36(4):839-47. PubMed ID: 9020782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Identification of Cholesterol Binding Motifs in the Chemokine Receptor CCR3.
    van Aalst E; Koneri J; Wylie BJ
    Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of a collage of cholesterol interaction motifs in transmembrane helix V of the serotonin
    Fatakia SN; Sarkar P; Chattopadhyay A
    Chem Phys Lipids; 2020 Oct; 232():104955. PubMed ID: 32846149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol Interaction with the MAGUK Protein Family Member, MPP1, via CRAC and CRAC-Like Motifs: An In Silico Docking Analysis.
    Listowski MA; Leluk J; Kraszewski S; Sikorski AF
    PLoS One; 2015; 10(7):e0133141. PubMed ID: 26186446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Interplay of Cholesterol and Ligand Binding in
    Lai HTT; Giorgetti A; Rossetti G; Nguyen TT; Carloni P; Kranjc A
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33652554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol and the interaction of proteins with membrane domains.
    Epand RM
    Prog Lipid Res; 2006 Jul; 45(4):279-94. PubMed ID: 16574236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caveolin scaffolding region and cholesterol-rich domains in membranes.
    Epand RM; Sayer BG; Epand RF
    J Mol Biol; 2005 Jan; 345(2):339-50. PubMed ID: 15571726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of the extracellular domain of the Ca²⁺-sensing receptor: an alternate model for the Ca²⁺ sensing region.
    Morrill GA; Kostellow AB; Gupta RK
    Biochem Biophys Res Commun; 2015 Mar; 459(1):36-41. PubMed ID: 25701780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.