BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 28864108)

  • 1. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
    Foley JP; Blackney DM; Ennis EJ
    J Chromatogr A; 2017 Nov; 1523():80-89. PubMed ID: 28864108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary.
    Kaneta T; Ueda T; Hata K; Imasaka T
    J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring electroosmotic flow in microchips and capillaries.
    Gilman SD; Chapman PJ
    Methods Mol Biol; 2006; 339():187-202. PubMed ID: 16790874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent cationic copolymer coatings allowing tunable electroosmotic flow for optimization of capillary electrophoretic separations.
    Konášová R; Butnariu M; Šolínová V; Kašička V; Koval D
    Anal Chim Acta; 2021 Sep; 1178():338789. PubMed ID: 34482877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic approach for avoiding co-detection of oppositely charged analytes in dual-opposite-injection capillary electrophoresis.
    Blackney DM; Foley JP
    J Chromatogr A; 2015 May; 1395():180-9. PubMed ID: 25892641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical overview of non-aqueous capillary electrophoresis. Part II: separation efficiency and analysis time.
    Kenndler E
    J Chromatogr A; 2014 Mar; 1335():31-41. PubMed ID: 24485541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 100,000-fold concentration of anions in capillary zone electrophoresis using electroosmotic flow controlled counterflow isotachophoretic stacking under field amplified conditions.
    Breadmore MC; Quirino JP
    Anal Chem; 2008 Aug; 80(16):6373-81. PubMed ID: 18627177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of electroosmotic flow on selectivity, efficiency, and resolution in capillary zone electrophoresis expressed by the dimensionless reduced mobility.
    Kenndler E
    J Capillary Electrophor; 1996; 3(4):191-8. PubMed ID: 9384736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microchip-Based Electrophoretic Separations with a Pressure-Driven Backflow.
    Xia L; Dutta D
    Methods Mol Biol; 2019; 1906():239-249. PubMed ID: 30488397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface enhanced Raman spectroscopy in microchip electrophoresis.
    Tycova A; Gerhardt RF; Belder D
    J Chromatogr A; 2018 Mar; 1541():39-46. PubMed ID: 29433820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous separation of anions and cations by capillary electrophoresis with high magnitude, reversed electroosmotic flow.
    Johns C; Yang W; Macka M; Haddad PR
    J Chromatogr A; 2004 Oct; 1050(2):217-22. PubMed ID: 15508315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow variation as a factor determining repeatability of the internal standard-based qualitative and quantitative analyses by capillary electrophoresis.
    Nowak PM; Woźniakiewicz M; Kościelniak P
    J Chromatogr A; 2018 May; 1548():92-99. PubMed ID: 29559267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.
    Ghosal S
    Electrophoresis; 2004 Jan; 25(2):214-28. PubMed ID: 14743475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External electric field control of electroosmotic flow in non-coated and coated fused-silica capillaries and its application for capillary electrophoretic separations of peptides.
    Kasicka V; Prusík Z; Sázelová P; Chiari M; Miksík I; Deyl Z
    J Chromatogr B Biomed Sci Appl; 2000 Apr; 741(1):43-54. PubMed ID: 10839131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Success and failure with phthalate buffers in capillary zone electrophoresis.
    Bocek P; Gebauer P; Beckers JL
    Electrophoresis; 2001 Apr; 22(6):1106-11. PubMed ID: 11358134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New peak broadening parameter for the characterization of separation capability in capillary electrophoresis.
    Sursyakova VV; Rubaylo AI
    J Sep Sci; 2015 Feb; 38(4):690-6. PubMed ID: 25491508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual UV-absorbing background electrolytes for simultaneous separation and detection of small cations and anions by capillary zone electrophoresis.
    Xiong X; Li SF
    Electrophoresis; 1998 Sep; 19(12):2243-51. PubMed ID: 9761211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.