BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 28864108)

  • 21. Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis.
    Milanova D; Chambers RD; Bahga SS; Santiago JG
    Electrophoresis; 2011 Nov; 32(22):3286-94. PubMed ID: 22102501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroosmotic control of chiral separation in capillary zone electrophoresis.
    Hong S; Lee CS
    Electrophoresis; 1995 Nov; 16(11):2132-6. PubMed ID: 8748745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry.
    Batz NG; Mellors JS; Alarie JP; Ramsey JM
    Anal Chem; 2014 Apr; 86(7):3493-500. PubMed ID: 24655020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-opposite injection electrokinetic chromatography for the unbiased, simultaneous separation of cationic and anionic compounds.
    Durkin D; Foley JP
    Electrophoresis; 2000 Jun; 21(10):1997-2009. PubMed ID: 10879959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection.
    Duffy CF; MacCraith B; Diamond D; O'Kennedy R; Arriaga EA
    Lab Chip; 2006 Aug; 6(8):1007-11. PubMed ID: 16874370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Research progress of electrically-driven force based online rapid separation and enrichment techniques].
    Liu Y; Chen Y; Xiao X; Xia L; Li G
    Se Pu; 2020 Oct; 38(10):1197-1205. PubMed ID: 34213116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual-opposite injection capillary electrophoresis: Principles and misconceptions.
    Blackney DM; Foley JP
    Electrophoresis; 2017 Mar; 38(5):607-616. PubMed ID: 27859385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of the peak broadening due to detection in the electrophoretic separation of DNA by CE and microchip CE and the application of image sensor for ultra-small detection cell length.
    Ni Y; Zhao Y; Chen Q; Yamaguchi Y; Dou X
    J Sep Sci; 2019 Jul; 42(13):2280-2288. PubMed ID: 31038284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capillary zone electrophoresis with electroosmotic flow controlled by external radial electric field.
    Kasicka V; Prusík Z; Sázelová ; Brynda E; Stejskal J
    Electrophoresis; 1999 Sep; 20(12):2484-92. PubMed ID: 10499341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. System peaks in capillary zone electrophoresis of anions with negative voltage polarity and counter-electroosmotic flow.
    Sursyakova VV; Kalyakin SN; Burmakina GV; Rubaylo AI
    Electrophoresis; 2011 Jan; 32(2):210-7. PubMed ID: 21254117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capillary and microfluidic gradient elution isotachophoresis coupled to capillary zone electrophoresis for femtomolar amino acid detection limits.
    Davis NI; Mamunooru M; Vyas CA; Shackman JG
    Anal Chem; 2009 Jul; 81(13):5452-9. PubMed ID: 19476344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of the electroosmotic mobility on the applied electric field and its reproducibility in capillary electrophoresis.
    Bello MS; Capelli L; Righetti PG
    J Chromatogr A; 1994 Nov; 684(2):311-22. PubMed ID: 7987479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding mechanisms of pressure-assisted electrokinetic injection: application to analysis of bromate, arsenic and selenium species in drinking water by capillary electrophoresis-mass spectrometry.
    Zhang H; Gavina J; Feng YL
    J Chromatogr A; 2011 May; 1218(20):3095-104. PubMed ID: 21489539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobility-based selective on-line preconcentration of proteins in capillary electrophoresis by controlling electroosmotic flow.
    Wang Q; Yue B; Lee ML
    J Chromatogr A; 2004 Jan; 1025(1):139-46. PubMed ID: 14753681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deconvolution of electrokinetic and chromatographic contributions to solute migration in stereoselective ion-exchange capillary electrochromatography on monolithic silica capillary columns.
    Preinerstorfer B; Lämmerhofer M; Hoffmann CV; Lubda D; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):3065-78. PubMed ID: 18428190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion association with alkylammonium cations for separation of anions by capillary electrophoresis.
    Steiner SA; Watson DM; Fritz JS
    J Chromatogr A; 2005 Aug; 1085(1):170-5. PubMed ID: 16106865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indirect amperometric measurement of electroosmotic flow rates and effective mobilities in microchip capillary electrophoresis.
    Wang W; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Feb; 1142(2):209-13. PubMed ID: 17222859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The principles of migration and dispersion in capillary zone electrophoresis in nonaqueous solvents.
    Porras SP; Riekkola ML; Kenndler E
    Electrophoresis; 2003 May; 24(10):1485-98. PubMed ID: 12761779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advantages and limitations of a new cationic coating inducing a slow electroosmotic flow for CE-MS peptide analysis: a comparative study with commercial coatings.
    Pattky M; Huhn C
    Anal Bioanal Chem; 2013 Jan; 405(1):225-37. PubMed ID: 23073698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.