These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28864346)

  • 1. Re"CYC"ling molecular regulators in the evolution and development of flower symmetry.
    Spencer V; Kim M
    Semin Cell Dev Biol; 2018 Jul; 79():16-26. PubMed ID: 28864346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry.
    Citerne HL; Reyes E; Le Guilloux M; Delannoy E; Simonnet F; Sauquet H; Weston PH; Nadot S; Damerval C
    Ann Bot; 2017 Feb; 119(3):367-378. PubMed ID: 28025288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene duplication and relaxation from selective constraints of GCYC genes correlated with various floral symmetry patterns in Asiatic Gesneriaceae tribe Trichosporeae.
    Hsin KT; Lu JY; Möller M; Wang CN
    PLoS One; 2019; 14(1):e0210054. PubMed ID: 30699126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary trends in the flowers of Asteridae: is polyandry an alternative to zygomorphy?
    Jabbour F; Damerval C; Nadot S
    Ann Bot; 2008 Aug; 102(2):153-65. PubMed ID: 18511411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae).
    Tähtiharju S; Rijpkema AS; Vetterli A; Albert VA; Teeri TH; Elomaa P
    Mol Biol Evol; 2012 Apr; 29(4):1155-66. PubMed ID: 22101417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of CYCLOIDEA-like genes in Fabales: Insights into duplication patterns and the control of floral symmetry.
    Zhao Z; Hu J; Chen S; Luo Z; Luo D; Wen J; Tu T; Zhang D
    Mol Phylogenet Evol; 2019 Mar; 132():81-89. PubMed ID: 30508631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolvability of flower geometry: Convergence in pollinator-driven morphological evolution of flowers.
    Woźniak NJ; Sicard A
    Semin Cell Dev Biol; 2018 Jul; 79():3-15. PubMed ID: 28941876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Floral zygomorphy, the recurring evolution of a successful trait.
    Cubas P
    Bioessays; 2004 Nov; 26(11):1175-84. PubMed ID: 15499590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A design principle for floral organ number and arrangement in flowers with bilateral symmetry.
    Nakagawa A; Kitazawa MS; Fujimoto K
    Development; 2020 Feb; 147(3):. PubMed ID: 31969326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radial or Bilateral? The Molecular Basis of Floral Symmetry.
    Lucibelli F; Valoroso MC; Aceto S
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32268578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Regulatory Changes Underlying Differential Expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR Genes Associated with Petal Variations in Zygomorphic Flowers of Petrocosmea spp. of the Family Gesneriaceae.
    Yang X; Zhao XG; Li CQ; Liu J; Qiu ZJ; Dong Y; Wang YZ
    Plant Physiol; 2015 Nov; 169(3):2138-51. PubMed ID: 26351309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of symmetry genes and the evolution of floral morphologies.
    Hileman LC; Kramer EM; Baum DA
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12814-9. PubMed ID: 14555758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome.
    Preston JC; Martinez CC; Hileman LC
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2343-8. PubMed ID: 21282634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.
    Damerval C; Le Guilloux M; Jager M; Charon C
    Plant Physiol; 2007 Feb; 143(2):759-72. PubMed ID: 17189327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tinkering with transcription factor networks for developmental robustness of Ranunculales flowers.
    Becker A
    Ann Bot; 2016 Apr; 117(5):845-58. PubMed ID: 27091506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zygomorphic flowers last longer: the evolution of floral symmetry and floral longevity.
    Stephens RE; Gallagher RV; Méndez M; Sauquet H
    Biol Lett; 2024 Jun; 20(6):20240082. PubMed ID: 38889773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Floret Symmetry by RAY3, SvDIV1B, and SvRAD in the Capitulum of Senecio vulgaris.
    Garcês HM; Spencer VM; Kim M
    Plant Physiol; 2016 Jul; 171(3):2055-68. PubMed ID: 27208229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots).
    Zhao Y; Pfannebecker K; Dommes AB; Hidalgo O; Becker A; Elomaa P
    New Phytol; 2018 Oct; 220(1):317-331. PubMed ID: 29949661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of floral symmetry: a state of the art.
    Jabbour F; Nadot S; Damerval C
    C R Biol; 2009; 332(2-3):219-31. PubMed ID: 19281953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.