These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 28864959)
1. Transoral robotic-assisted surgery for the approach to anterior cervical spine lesions. Molteni G; Greco MG; Presutti L Eur Arch Otorhinolaryngol; 2017 Nov; 274(11):4011-4016. PubMed ID: 28864959 [TBL] [Abstract][Full Text] [Related]
2. Transoral robotic surgery for sellar tumors: first clinical study. Chauvet D; Hans S; Missistrano A; Rebours C; Bakkouri WE; Lot G J Neurosurg; 2017 Oct; 127(4):941-948. PubMed ID: 28009229 [TBL] [Abstract][Full Text] [Related]
3. The advantages of submandibular gland resection in anterior retropharyngeal approach to the upper cervical spine. Skaf GS; Sabbagh AS; Hadi U Eur Spine J; 2007 Apr; 16(4):469-77. PubMed ID: 17013654 [TBL] [Abstract][Full Text] [Related]
5. Feasibility and safety of the da Vinci Xi surgical robot for transoral robotic surgery. Olson B; Cahill E; Imanguli M J Robot Surg; 2023 Apr; 17(2):571-576. PubMed ID: 35972598 [TBL] [Abstract][Full Text] [Related]
6. Perioperative safety, feasibility, and oncologic utility of transoral robotic surgery with da Vinci Xi platform. Gabrysz-Forget F; Mur T; Dolan R; Yarlagadda B J Robot Surg; 2020 Feb; 14(1):85-89. PubMed ID: 30825098 [TBL] [Abstract][Full Text] [Related]
7. Novel approach using transoral robotic surgery for resection of cervical spine chordoma. McCann AC; Berger C; Mahmoud AF; Kuan EC; Malhotra NR; O'Malley BW Laryngoscope; 2019 Jun; 129(6):1395-1399. PubMed ID: 30456816 [TBL] [Abstract][Full Text] [Related]
8. Transoral robotic surgery for the base of tongue squamous cell carcinoma: a preliminary comparison between da Vinci Xi and Si. Alessandrini M; Pavone I; Micarelli A; Caporale C J Robot Surg; 2018 Sep; 12(3):417-423. PubMed ID: 28905287 [TBL] [Abstract][Full Text] [Related]
9. Early experiences with image-guided transoral surgery for the pathologies of the upper cervical spine. Veres R; Bagó A; Fedorcsák I Spine (Phila Pa 1976); 2001 Jun; 26(12):1385-8. PubMed ID: 11426156 [TBL] [Abstract][Full Text] [Related]
10. Early assessment of feasibility and technical specificities of transoral robotic surgery using the da Vinci Xi. Gorphe P; Von Tan J; El Bedoui S; Hartl DM; Auperin A; Qassemyar Q; Moya-Plana A; Janot F; Julieron M; Temam S J Robot Surg; 2017 Dec; 11(4):455-461. PubMed ID: 28064382 [TBL] [Abstract][Full Text] [Related]
11. Transoral robotic surgery of craniocervical junction and atlantoaxial spine: a cadaveric study. Lee JY; O'Malley BW; Newman JG; Weinstein GS; Lega B; Diaz J; Grady MS J Neurosurg Spine; 2010 Jan; 12(1):13-8. PubMed ID: 20043757 [TBL] [Abstract][Full Text] [Related]
12. Preliminary study of transoral robotic surgery for pharyngeal cancer in Japan. Fujiwara K; Fukuhara T; Kitano H; Fujii T; Koyama S; Yamasaki A; Kataoka H; Takeuchi H J Robot Surg; 2016 Mar; 10(1):11-7. PubMed ID: 26645072 [TBL] [Abstract][Full Text] [Related]
13. Transoral Decompression and Stabilization of the Upper Cervical Segments of the Spine Using Custom-Made Implants in Various Pathologic Conditions of the Craniovertebral Junction. Shkarubo AN; Kuleshov AA; Chernov IV; Vetrile MS; Lisyansky IN; Makarov SN; Ponomarenko GP; Spyrou M World Neurosurg; 2018 Jan; 109():e155-e163. PubMed ID: 28962950 [TBL] [Abstract][Full Text] [Related]
14. The Settings, Pros and Cons of the New Surgical Robot da Vinci Xi System for Transoral Robotic Surgery (TORS): A Comparison With the Popular da Vinci Si System. Kim DH; Kim H; Kwak S; Baek K; Na G; Kim JH; Kim SH Surg Laparosc Endosc Percutan Tech; 2016 Oct; 26(5):391-396. PubMed ID: 27661201 [TBL] [Abstract][Full Text] [Related]
15. The influence of cervical spine position on the three anterior endoscopic approaches to the craniovertebral junction: an imaging study. Lin ZK; Chi YL; Wang XY; Yu Q; Fang BD; Wu LJ Spine J; 2014 Jan; 14(1):80-6. PubMed ID: 24144692 [TBL] [Abstract][Full Text] [Related]
16. C1-C2 posterior fusion in growing patients: long-term follow-up. Parisini P; Di Silvestre M; Greggi T; Bianchi G Spine (Phila Pa 1976); 2003 Mar; 28(6):566-72; discussion 572. PubMed ID: 12642763 [TBL] [Abstract][Full Text] [Related]
17. Prospective clinical trial to evaluate safety and feasibility of using a single port flexible robotic system for transoral head and neck surgery. Chan JYK; Tsang RK; Holsinger FC; Tong MCF; Ng CWK; Chiu PWY; Ng SSM; Wong EWY Oral Oncol; 2019 Jul; 94():101-105. PubMed ID: 31178203 [TBL] [Abstract][Full Text] [Related]
18. Preclinical implementation of a steerable, Da Vinci Xi® compatible CO Meulemans J; Vandebroek T; Ourak M; Vander Poorten E; Vander Poorten V Int J Med Robot; 2022 Feb; 18(1):e2342. PubMed ID: 34652069 [TBL] [Abstract][Full Text] [Related]
19. Combined endoscopic transcervical-transoral robotic approach for resection of parapharyngeal space tumors. Duek I; Amit M; Sviri GE; Gil Z Head Neck; 2017 Apr; 39(4):786-790. PubMed ID: 28139028 [TBL] [Abstract][Full Text] [Related]
20. Early results of a safety and feasibility clinical trial of a novel single-port flexible robot for transoral robotic surgery. Chan JYK; Wong EWY; Tsang RK; Holsinger FC; Tong MCF; Chiu PWY; Ng SSM Eur Arch Otorhinolaryngol; 2017 Nov; 274(11):3993-3996. PubMed ID: 28871410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]