These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28865157)

  • 41. Prehypertensive renin-angiotensin-aldosterone system blockade in spontaneously hypertensive rats ameliorates the loss of long-term vascular function.
    Baumann M; Megens R; Bartholome R; Dolff S; van Zandvoort MA; Smits JF; Struijker-Boudier HA; De Mey JG
    Hypertens Res; 2007 Sep; 30(9):853-61. PubMed ID: 18037779
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activities of hypothalamic angiotensin II-sensitive neurons are greately enhanced even in prehypertensive spontaneously hypertensive rats.
    Kubo T; Hagiwara Y
    Neurosci Lett; 2006 Apr 10-17; 397(1-2):74-8. PubMed ID: 16384641
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The inhibitory effect of angiotensin II on stimulus-induced release of cAMP is augmented in the genetically hypertensive rat kidney.
    Vyas SJ; Mi Z; Jackson EK
    J Pharmacol Exp Ther; 1996 Oct; 279(1):114-9. PubMed ID: 8858983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats.
    Zhou J; Pavel J; Macova M; Yu ZX; Imboden H; Ge L; Nishioku T; Dou J; Delgiacco E; Saavedra JM
    Stroke; 2006 May; 37(5):1271-6. PubMed ID: 16601219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of angiotensin-(1-7) in rostral ventrolateral medulla in blood pressure regulation via sympathetic nerve activity in Wistar-Kyoto and spontaneous hypertensive rats.
    Nakagaki T; Hirooka Y; Ito K; Kishi T; Hoka S; Sunagawa K
    Clin Exp Hypertens; 2011; 33(4):223-30. PubMed ID: 21699448
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vasodilation mediated by angiotensin II type 2 receptor is impaired in afferent arterioles of young spontaneously hypertensive rats.
    Endo Y; Arima S; Yaoita H; Tsunoda K; Omata K; Ito S
    J Vasc Res; 1998; 35(6):421-7. PubMed ID: 9858867
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Angiotensin-converting enzyme and angiotensin II receptor subtype 1 inhibitors restitute hypertensive internal anal sphincter in the spontaneously hypertensive rats.
    De Godoy MA; Rattan S
    J Pharmacol Exp Ther; 2006 Aug; 318(2):725-34. PubMed ID: 16648368
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel mechanism of intra‑renal angiotensin II-induced sodium/proton exchanger 3 expression by losartan in spontaneously hypertensive rats.
    Fan X; Liu K; Cui W; Huang J; Wang W; Gao Y
    Mol Med Rep; 2014 Nov; 10(5):2483-8. PubMed ID: 25119059
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition.
    Yamakawa H; Jezova M; Ando H; Saavedra JM
    J Cereb Blood Flow Metab; 2003 Mar; 23(3):371-80. PubMed ID: 12621312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protective effects of angiotensin II type 1 receptor blocker on cerebral circulation independent of blood pressure.
    Kumai Y; Ooboshi H; Ago T; Ishikawa E; Takada J; Kamouchi M; Kitazono T; Ibayashi S; Iida M
    Exp Neurol; 2008 Apr; 210(2):441-8. PubMed ID: 18177860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Angiotensin and thromboxane in genetically hypertensive rats: renal blood flow and receptor studies.
    Chatziantoniou C; Arendshorst WJ
    Am J Physiol; 1991 Aug; 261(2 Pt 2):F238-47. PubMed ID: 1831598
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.
    Chen K; Deng K; Wang X; Wang Z; Zheng S; Ren H; He D; Han Y; Asico LD; Jose PA; Zeng C
    Hypertension; 2015 Jan; 65(1):153-60. PubMed ID: 25368031
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ analysis of microvascular pericytes in hypertensive rat brains.
    Herman IM; Jacobson S
    Tissue Cell; 1988; 20(1):1-12. PubMed ID: 3388410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cerebral microvascular dysfunction in metabolic syndrome is exacerbated by ischemia-reperfusion injury.
    Obadia N; Lessa MA; Daliry A; Silvares RR; Gomes F; Tibiriçá E; Estato V
    BMC Neurosci; 2017 Sep; 18(1):67. PubMed ID: 28886695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. EFFICACY OF MESENCHYMAL STEM CELLS USED FOR THE IMPROVEMENT CEREBRAL MICROCIRCULATION IN SPONTANEOUSLY HYPERTENSIVE RATS.
    Sokolova IB; Polyntsev DG
    Tsitologiia; 2017; 59(4):279-84. PubMed ID: 30188091
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [PARAMETERS OF CEREBRAL CORTEX CAPILLARY NETWORK IN SHR RATS DURING THE DEVELOPMENT OF ARTERIAL HYPERTENSION AND STABLE HIGH BLOOD PRESSURE].
    Plotnikov MB; Aliev OI; Anishchenko AM; Sidekhmenova AB; Shamanaev AY; Fomina TI
    Ross Fiziol Zh Im I M Sechenova; 2016 May; 102(5):558-66. PubMed ID: 30192470
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Concomitant enlargement of perivascular spaces and decrease in glymphatic transport in an animal model of cerebral small vessel disease.
    Xue Y; Liu N; Zhang M; Ren X; Tang J; Fu J
    Brain Res Bull; 2020 Aug; 161():78-83. PubMed ID: 32353396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive changes in cerebral blood vessels during chronic hypertension.
    Baumbach GL; Heistad DD
    J Hypertens; 1991 Nov; 9(11):987-91. PubMed ID: 1661770
    [No Abstract]   [Full Text] [Related]  

  • 59. Polymorphonuclear leukocytes and microcirculatory perfusion in acute stroke in the SHR.
    Dawson DA; Ruetzler CA; Carlos TM; Kochanek PM; Hallenbeck JM
    Keio J Med; 1996 Sep; 45(3):248-52; discussion 252-3. PubMed ID: 8897768
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypertension induced changes in cerebral capillary permeability to water are mediated by afferent neuronal connections from the carotid sinus to the brain.
    Ling RT; Hartman BK; Clark HB
    Brain Res; 1984 Aug; 308(2):301-8. PubMed ID: 6478210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.