BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28865175)

  • 1. Control of cell growth on 3D-printed cell culture platforms for tissue engineering.
    Tan Z; Liu T; Zhong J; Yang Y; Tan W
    J Biomed Mater Res A; 2017 Dec; 105(12):3281-3292. PubMed ID: 28865175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of cell proliferation in E-jet 3D-printed scaffolds for tissue engineering applications: the influence of the cell alignment angle.
    Liu T; Huang R; Zhong J; Yang Y; Tan Z; Tan W
    J Mater Chem B; 2017 May; 5(20):3728-3738. PubMed ID: 32264061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing of PLGA scaffolds for tissue engineering.
    Mironov AV; Grigoryev AM; Krotova LI; Skaletsky NN; Popov VK; Sevastianov VI
    J Biomed Mater Res A; 2017 Jan; 105(1):104-109. PubMed ID: 27543196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced growth and differentiation of myoblast cells grown on E-jet 3D printed platforms.
    Chen H; Zhong J; Wang J; Huang R; Qiao X; Wang H; Tan Z
    Int J Nanomedicine; 2019; 14():937-950. PubMed ID: 30787608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells.
    Sperling LE; Reis KP; Pozzobon LG; Girardi CS; Pranke P
    J Biomed Mater Res A; 2017 May; 105(5):1333-1345. PubMed ID: 28120428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro evaluation of poly (lactic-co-glycolic acid)/polyisoprene fibers for soft tissue engineering.
    Marques DR; Dos Santos LAL; O'Brien MA; Cartmell SH; Gough JE
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2581-2591. PubMed ID: 27712036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.
    Li M; Liu W; Sun J; Xianyu Y; Wang J; Zhang W; Zheng W; Huang D; Di S; Long YZ; Jiang X
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5921-6. PubMed ID: 23790233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology.
    Lee H; Yoo JJ; Kang HW; Cho DW
    Biofabrication; 2016 Feb; 8(1):015011. PubMed ID: 26844711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing a three-dimensional expanded polytetrafluoroethylene-poly(lactic-co-glycolic acid) scaffold for tissue engineering.
    Shao HJ; Chen CS; Lee IC; Wang JH; Young TH
    Artif Organs; 2009 Apr; 33(4):309-17. PubMed ID: 19335407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture.
    Li K; Wang D; Zhao K; Song K; Liang J
    Talanta; 2020 May; 211():120750. PubMed ID: 32070610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A building-block approach to 3D printing a multichannel, organ-regenerative scaffold.
    Wang X; Rijff BL; Khang G
    J Tissue Eng Regen Med; 2017 May; 11(5):1403-1411. PubMed ID: 26123711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.
    Wu Y; Sriram G; Fawzy AS; Fuh JY; Rosa V; Cao T; Wong YS
    J Biomater Appl; 2016 Aug; 31(2):181-92. PubMed ID: 27252227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers.
    Kim BS; Jang J; Chae S; Gao G; Kong JS; Ahn M; Cho DW
    Biofabrication; 2016 Aug; 8(3):035013. PubMed ID: 27550946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair.
    Ott LM; Zabel TA; Walker NK; Farris AL; Chakroff JT; Ohst DG; Johnson JK; Gehrke SH; Weatherly RA; Detamore MS
    Biomed Mater; 2016 Apr; 11(2):025020. PubMed ID: 27097554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.
    Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G
    J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.
    Guo T; Holzberg TR; Lim CG; Gao F; Gargava A; Trachtenberg JE; Mikos AG; Fisher JP
    Biofabrication; 2017 Apr; 9(2):024101. PubMed ID: 28244880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells.
    Akbarzadeh R; Minton JA; Janney CS; Smith TA; James PF; Yousefi AM
    J Mater Sci Mater Med; 2015 Feb; 26(2):116. PubMed ID: 25665851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Poly(Lactic-co-glycolic acid) Scaffolds for Treating Spinal Cord Injury.
    Sun F; Shi T; Zhou T; Dong D; Xie J; Wang R; An X; Chen M; Cai J
    J Biomed Nanotechnol; 2017 Mar; 13(3):290-302. PubMed ID: 29381284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.