BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28865268)

  • 1. Effects of resource availability and hydrological regime on autochthonous and allochthonous carbon in the food web of a large cross-border river (China).
    Zheng Y; Niu J; Zhou Q; Xie C; Ke Z; Li D; Gao Y
    Sci Total Environ; 2018 Jan; 612():501-512. PubMed ID: 28865268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terrestrial contributions to the aquatic food web in the middle Yangtze River.
    Wang J; Gu B; Huang J; Han X; Lin G; Zheng F; Li Y
    PLoS One; 2014; 9(7):e102473. PubMed ID: 25047656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.
    Kautza A; Mazeika S; Sullivan P
    Ecology; 2016 Mar; 97(3):694-705. PubMed ID: 27197396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large herbivorous wildlife and livestock differentially influence the relative importance of different sources of energy for riverine food webs.
    Masese FO; Fuss T; Bistarelli LT; Buchen-Tschiskale C; Singer G
    Sci Total Environ; 2022 Jul; 828():154452. PubMed ID: 35278569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river.
    Thorp JH; Delong MD; Greenwood KS; Casper AF
    Oecologia; 1998 Dec; 117(4):551-563. PubMed ID: 28307681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen loadings affect trophic structure in stream food webs on the Tibetan Plateau, China.
    Zhang J; Xu J; Tan X; Zhang Q
    Sci Total Environ; 2022 Oct; 844():157018. PubMed ID: 35772539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terrestrial support of aquatic food webs depends on light inputs: a geographically-replicated test using tank bromeliads.
    Farjalla VF; González AL; Céréghino R; Dézerald O; Marino NA; Piccoli GC; Richardson BA; Richardson MJ; Romero GQ; Srivastava DS
    Ecology; 2016 Aug; 97(8):2147-2156. PubMed ID: 27859200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trophic positioning of meiofauna revealed by stable isotopes and food web analyses.
    Schmid-Araya JM; Schmid PE; Tod SP; Esteban GF
    Ecology; 2016 Nov; 97(11):3099-3109. PubMed ID: 27870020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River.
    Delong MD; Thorp JH
    Oecologia; 2006 Feb; 147(1):76-85. PubMed ID: 16170563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consumer-resource coupling in wet-dry tropical rivers.
    Jardine TD; Pettit NE; Warfe DM; Pusey BJ; Ward DP; Douglas MM; Davies PM; Bunn SE
    J Anim Ecol; 2012 Mar; 81(2):310-22. PubMed ID: 22103689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hurricane disturbance drives trophic changes in neotropical mountain stream food webs.
    Gutiérrez-Fonseca PE; Pringle CM; Ramírez A; Gómez JE; García P
    Ecology; 2024 Jan; 105(1):e4202. PubMed ID: 37926483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of deltaic wetland food sources to coastal macrobenthic consumers (Po River Delta, north Adriatic Sea).
    Bongiorni L; Nasi F; Fiorentino F; Auriemma R; Rampazzo F; Nordström MC; Berto D
    Sci Total Environ; 2018 Dec; 643():1373-1386. PubMed ID: 30189554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen.
    Doucett RR; Marks JC; Blinn DW; Caron M; Hungate BA
    Ecology; 2007 Jun; 88(6):1587-92. PubMed ID: 17601150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence supporting the importance of terrestrial carbon in a large-river food web.
    Zeug SC; Winemiller KO
    Ecology; 2008 Jun; 89(6):1733-43. PubMed ID: 18589537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fruit of the forest - larval sea lamprey Petromyzon marinus are fuelled by allochthonous resources.
    Hayden B; Ferron M; Cunjak RA; Samways K
    J Fish Biol; 2019 Sep; 95(3):781-792. PubMed ID: 31141171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal pattern of resource utilization by aquatic consumers along a disturbed subtropical urban river: Estimating the relative contribution of resources with stable isotope analysis.
    Wang S; Wang TT; Xia WT; Chen ZB; Stewart SD; Yang FJ; Cheng G; Wang XD; Wang DY; Xie SG
    Ecol Evol; 2021 Dec; 11(23):16763-16775. PubMed ID: 34938471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple stressors shape invertebrate assemblages and reduce their trophic niche: A case study in a regulated stream.
    Dolédec S; Simon L; Blemus J; Rigal A; Robin J; Mermillod-Blondin F
    Sci Total Environ; 2021 Jun; 773():145061. PubMed ID: 33940713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling the role of allochthonous aquatic resources to food web structure in a tropical riparian forest.
    Recalde FC; Postali TC; Romero GQ
    J Anim Ecol; 2016 Mar; 85(2):525-36. PubMed ID: 26590144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased reliance of stream macroinvertebrates on terrestrial food sources linked to forest management intensity.
    Erdozain M; Kidd K; Kreutzweiser D; Sibley P
    Ecol Appl; 2019 Jun; 29(4):e01889. PubMed ID: 30929306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophodynamic linkage between river runoff and coastal fishery yield elucidated by stable isotope data in the Gulf of Lions (NW Mediterranean).
    Darnaude AM; Salen-Picard C; Polunin NV; Harmelin-Vivien ML
    Oecologia; 2004 Feb; 138(3):325-32. PubMed ID: 14689296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.