BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

728 related articles for article (PubMed ID: 28865927)

  • 1. Construction accident narrative classification: An evaluation of text mining techniques.
    Goh YM; Ubeynarayana CU
    Accid Anal Prev; 2017 Nov; 108():122-130. PubMed ID: 28865927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review.
    Marucci-Wellman HR; Corns HL; Lehto MR
    Accid Anal Prev; 2017 Jan; 98():359-371. PubMed ID: 27863339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing safety of construction workers in Korea: an integrated text mining and machine learning framework for predicting accident types.
    Yoo JW; Park J; Park H
    Int J Inj Contr Saf Promot; 2024 Jun; 31(2):203-215. PubMed ID: 38164519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Make Intelligent of Gastric Cancer Diagnosis Error in Qazvin's Medical Centers: Using Data Mining Method.
    Mortezagholi A; Khosravizadeh O; Menhaj MB; Shafigh Y; Kalhor R
    Asian Pac J Cancer Prev; 2019 Sep; 20(9):2607-2610. PubMed ID: 31554353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-miss narratives from the fire service: a Bayesian analysis.
    Taylor JA; Lacovara AV; Smith GS; Pandian R; Lehto M
    Accid Anal Prev; 2014 Jan; 62():119-29. PubMed ID: 24144497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of 5-Year Survival with Data Mining Algorithms.
    Sailer F; Pobiruchin M; Bochum S; Martens UM; Schramm W
    Stud Health Technol Inform; 2015; 213():75-8. PubMed ID: 26152957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis.
    Imura T; Toda H; Iwamoto Y; Inagawa T; Imada N; Tanaka R; Inoue Y; Araki H; Araki O
    J Stroke Cerebrovasc Dis; 2021 Oct; 30(10):106011. PubMed ID: 34325274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing accident narratives with word embeddings: Improving accuracy, richness, and generalizability.
    Goldberg DM
    J Safety Res; 2022 Feb; 80():441-455. PubMed ID: 35249625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing information from injury narratives in the 'big data' era: understanding and applying machine learning for injury surveillance.
    Vallmuur K; Marucci-Wellman HR; Taylor JA; Lehto M; Corns HL; Smith GS
    Inj Prev; 2016 Apr; 22 Suppl 1(Suppl 1):i34-42. PubMed ID: 26728004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pediatric Injury Surveillance From Uncoded Emergency Department Admission Records in Italy: Machine Learning-Based Text-Mining Approach.
    Azzolina D; Bressan S; Lorenzoni G; Baldan GA; Bartolotta P; Scognamiglio F; Francavilla A; Lanera C; Da Dalt L; Gregori D
    JMIR Public Health Surveill; 2023 Jul; 9():e44467. PubMed ID: 37436799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligning text mining and machine learning algorithms with best practices for study selection in systematic literature reviews.
    Popoff E; Besada M; Jansen JP; Cope S; Kanters S
    Syst Rev; 2020 Dec; 9(1):293. PubMed ID: 33308292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pan-cancer classification by regularized multi-task learning.
    Hossain SMM; Khatun L; Ray S; Mukhopadhyay A
    Sci Rep; 2021 Dec; 11(1):24252. PubMed ID: 34930937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the occurrence of surgical site infections using text mining and machine learning.
    da Silva DA; Ten Caten CS; Dos Santos RP; Fogliatto FS; Hsuan J
    PLoS One; 2019; 14(12):e0226272. PubMed ID: 31834905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using multiclass classification to automate the identification of patient safety incident reports by type and severity.
    Wang Y; Coiera E; Runciman W; Magrabi F
    BMC Med Inform Decis Mak; 2017 Jun; 17(1):84. PubMed ID: 28606174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing robust arsenic awareness prediction models using machine learning algorithms.
    Singh SK; Taylor RW; Rahman MM; Pradhan B
    J Environ Manage; 2018 Apr; 211():125-137. PubMed ID: 29408061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer.
    Alabi RO; Elmusrati M; Sawazaki-Calone I; Kowalski LP; Haglund C; Coletta RD; Mäkitie AA; Salo T; Almangush A; Leivo I
    Int J Med Inform; 2020 Apr; 136():104068. PubMed ID: 31923822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Raeisi Shahraki H; Pourahmad S; Zare N
    Biomed Res Int; 2017; 2017():7560807. PubMed ID: 29376076
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 37.