BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28866033)

  • 41. Clinical, Angiographic, Functional, and Imaging Outcomes 12 Months After Implantation of Drug-Eluting Bioresorbable Vascular Scaffolds in Acute Coronary Syndromes.
    Gori T; Schulz E; Hink U; Kress M; Weiers N; Weissner M; Jabs A; Wenzel P; Capodanno D; Münzel T
    JACC Cardiovasc Interv; 2015 May; 8(6):770-777. PubMed ID: 25999097
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Scaffold thrombosis following implantation of the ABSORB BVS in routine clinical practice: Insight into possible mechanisms from optical coherence tomography.
    Kraak RP; Kajita AH; Garcia-Garcia HM; Henriques JPS; Piek JJ; Arkenbout EK; van der Schaaf RJ; Tijssen JGP; de Winter RJ; Wykrzykowska JJ
    Catheter Cardiovasc Interv; 2018 Aug; 92(2):E106-E114. PubMed ID: 29332307
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-term intravascular follow-up of coronary bifurcation treatment with Absorb bioresorbable vascular scaffold.
    Vanhaverbeke M; McCutcheon K; Dubois C; Bennett J
    Acta Cardiol; 2018 Aug; 73(4):413-414. PubMed ID: 29277145
    [No Abstract]   [Full Text] [Related]  

  • 44. An Unusual Complication After Bioresorbable Scaffold Implantation: Visualization of Intramural Hematoma by Optical Coherence Tomography.
    Zhang BC; Karanasos A; Royaards KJ; Ligthart J; Regar E
    JACC Cardiovasc Interv; 2015 Aug; 8(9):e143-e145. PubMed ID: 26292606
    [No Abstract]   [Full Text] [Related]  

  • 45. Novel 3-Dimensional Vessel and Scaffold Reconstruction Methodology for the Assessment of Strut-Level Wall Shear Stress After Deployment of Bioresorbable Vascular Scaffolds From the ABSORB III Imaging Substudy.
    Gogas BD; Yang B; Piccinelli M; Giddens DP; King SB; Kereiakes DJ; Ellis SG; Stone GW; Veneziani A; Samady H
    JACC Cardiovasc Interv; 2016 Mar; 9(5):501-3. PubMed ID: 26965940
    [No Abstract]   [Full Text] [Related]  

  • 46. Three-years outcomes of diabetic patients treated with coronary bioresorbable scaffolds.
    Anadol R; Schnitzler K; Lorenz L; Weissner M; Ullrich H; Polimeni A; Münzel T; Gori T
    BMC Cardiovasc Disord; 2018 May; 18(1):92. PubMed ID: 29743023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computed tomography angiography for guiding and follow-up of magnesium-bioresorbable scaffold implantation.
    Opolski MP; Kepka C; Wojakowski W; Witkowski A
    Clin Res Cardiol; 2019 Mar; 108(3):344-346. PubMed ID: 30182164
    [No Abstract]   [Full Text] [Related]  

  • 48. Serial assessment of bioresorbable-polymer sirolimus-eluting stent by coronary angioscopy and optical coherence tomography.
    Nakamura S; Kimura S; Nakagama S; Hayashi Y; Yamamoto T; Utsugi Y; Doi J; Mizusawa M; Araki M; Sudo Y; Hishikari K; Hikita H; Takahashi A; Isobe M
    Coron Artery Dis; 2017 Sep; 28(6):530-531. PubMed ID: 28402989
    [No Abstract]   [Full Text] [Related]  

  • 49. Early Collapse of a Magnesium Bioresorbable Scaffold.
    Cubero-Gallego H; Vandeloo B; Gomez-Lara J; Romaguera R; Roura G; Gomez-Hospital JA; Cequier A
    JACC Cardiovasc Interv; 2017 Sep; 10(18):e171-e172. PubMed ID: 28935085
    [No Abstract]   [Full Text] [Related]  

  • 50. Association of morphologic characteristics on optical coherence tomography and angiographic progression patterns of late restenosis after drug-eluting stent implantation.
    Yamaguchi H; Arikawa R; Takaoka J; Miyamura A; Atsuchi N; Ninomiya T; Atsuchi Y; Ohishi M; Terashima M; Kaneda H
    Cardiovasc Revasc Med; 2015; 16(1):32-5. PubMed ID: 25617940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical Coherence Tomography for Coronary Bioresorbable Vascular Scaffold Implantation: A Randomized Controlled Trial.
    Lee SY; Kang DY; Hong SJ; Ahn JM; Ahn CM; Park DW; Kim JS; Kim BK; Ko YG; Choi D; Jang Y; Park SJ; Hong MK
    Circ Cardiovasc Interv; 2020 Jan; 13(1):e008383. PubMed ID: 32525410
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-year clinical outcomes and multislice computed tomography angiographic results following implantation of the NeoVas bioresorbable sirolimus-eluting scaffold in patients with single de novo coronary artery lesions.
    Wang XZ; Zhang YJ; Fu GS; Jing QM; Xu B; Han YL
    Catheter Cardiovasc Interv; 2018 Feb; 91(S1):617-622. PubMed ID: 29392879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clinical outcomes following target lesion revascularization for bioresorbable scaffold failure.
    Tanaka A; Ruparelia N; Kawamoto H; Sticchi A; Figini F; Carlino M; Chieffo A; Montorfano M; Latib A; Colombo A
    Catheter Cardiovasc Interv; 2016 Apr; 87(5):832-6. PubMed ID: 26331577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laser for a complex PCI with ISR, undilatable, and uncrossable lesions.
    Chen Z; Chen Y; Zhou M; He Y
    Cardiol J; 2024; 31(2):357-358. PubMed ID: 38686987
    [No Abstract]   [Full Text] [Related]  

  • 55. Severe Neointimal Hyperplasia of Neoplastic Carina Following Bioresorbable Scaffold Implantation Using T-Stenting and Small Protrusion Technique: Insights From Optical Frequency Domain Imaging.
    Kawamoto H; Ruparelia N; Figini F; Latib A; Colombo A
    JACC Cardiovasc Interv; 2015 Nov; 8(13):e207-9. PubMed ID: 26476605
    [No Abstract]   [Full Text] [Related]  

  • 56. Six-month outcomes of the XINSORB bioresorbable sirolimus-eluting scaffold in treating single de novo lesions in human coronary artery.
    Wu Y; Shen L; Ge L; Wang Q; Qian J; Zhang F; Yao K; Huang D; Chen Y; Ge J
    Catheter Cardiovasc Interv; 2016 Mar; 87 Suppl 1():630-7. PubMed ID: 26864162
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioresorbable scaffolds for the treatment of in-stent restenosis.
    Dörr O; Liebetrau C; Wiebe J; Hecker F; Rixe J; Möllmann H; Hamm C; Nef H
    Heart Vessels; 2015 Mar; 30(2):265-9. PubMed ID: 24390727
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of potential substrates for restenosis and thrombosis in overlapped versus edge-to-edge juxtaposed bioabsorbable scaffolds: Insights from a computed fluid dynamic study.
    Rigatelli G; Zuin M; Dell'Avvocata F; Cardaioli P; Vassiliev D; Ferenc M; Nghia NT; Nguyen T; Foin N
    Cardiovasc Revasc Med; 2018 Apr; 19(3 Pt A):273-278. PubMed ID: 28918876
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Short- and long-term implications of a bioresorbable vascular scaffold implantation on the local endothelial shear stress patterns.
    Bourantas CV; Papafaklis MI; Garcia-Garcia HM; Farooq V; Diletti R; Muramatsu T; Zhang Y; Kalatzis FG; Naka KK; Fotiadis DI; Onuma Y; Michalis LK; Serruys PW
    JACC Cardiovasc Interv; 2014 Jan; 7(1):100-1. PubMed ID: 24456718
    [No Abstract]   [Full Text] [Related]  

  • 60. Migrated remnant bioresorbable scaffolds in a left main bifurcation lesion: Insights from optical coherence tomography.
    Seo J; Kim Y; Kim BK; Hong SJ; Ahn CM; Kim JS; Cho DK; Ko YG; Choi D; Hong MK; Jang Y
    Cardiol J; 2020; 27(2):208-209. PubMed ID: 32463107
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.