These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28866033)

  • 61. First in human evaluation of the vascular biocompatibility and biomechanical performance of a novel ultra high molecular weight amorphous PLLA bioresorbable scaffold in the absence of anti-proliferative drugs: Two-year imaging results in humans.
    Moncada M; Delgado JA; Colombo A; Gasior P; Ramzipoor K; Estrada A; Lee C; Dokko D; Granada JF
    Catheter Cardiovasc Interv; 2018 Sep; 92(3):E246-E253. PubMed ID: 29243353
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Two-Year Follow-Up OCT Images of 2 Bifurcation Lesions Treated With Bioresorbable Vascular Scaffolds.
    Kawamoto H; Panoulas VF; Sato K; Miyazaki T; Latib A; Colombo A
    JACC Cardiovasc Imaging; 2015 May; 8(5):617-618. PubMed ID: 25457765
    [No Abstract]   [Full Text] [Related]  

  • 63. Accuracy of coronary computed tomography angiography for bioresorbable scaffold luminal investigation: a comparison with optical coherence tomography.
    Collet C; Sotomi Y; Cavalcante R; Asano T; Miyazaki Y; Tenekecioglu E; Kistlaar P; Zeng Y; Suwanasson P; de Winter RJ; Nieman K; Serruys PW; Onuma Y
    Int J Cardiovasc Imaging; 2017 Mar; 33(3):431-439. PubMed ID: 27896495
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Very late metallic stent malapposition and in-stent restenosis treated with a bioresorbable scaffold: a novel alternative for an old problem.
    Foin N; Lee R; Wong P; Low AF
    EuroIntervention; 2015 Aug; 11(4):e1. PubMed ID: 26298237
    [No Abstract]   [Full Text] [Related]  

  • 65. Treatment of coronary stent restenosis with drug-eluting bioabsorbable magnesium scaffolds.
    Alfonso F; Cuesta J; García-Guimaraes M; Bastante T; Maruri R; Rivero F
    Coron Artery Dis; 2017 Nov; 28(7):627-628. PubMed ID: 28644215
    [No Abstract]   [Full Text] [Related]  

  • 66. Fate of Different Types of Intrastent Tissue Protrusion: Optical Coherence Tomography and Angioscopic Serial Observations at Baseline and 9-Day and 3-Month Follow-Up.
    Suzuki S; Nakatani S; Sotomi Y; Shiojima I; Sakata Y; Higuchi Y
    JACC Cardiovasc Interv; 2018 Jan; 11(1):95-97. PubMed ID: 29248411
    [No Abstract]   [Full Text] [Related]  

  • 67. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study.
    Ormiston JA; Serruys PW; Onuma Y; van Geuns RJ; de Bruyne B; Dudek D; Thuesen L; Smits PC; Chevalier B; McClean D; Koolen J; Windecker S; Whitbourn R; Meredith I; Dorange C; Veldhof S; Hebert KM; Rapoza R; Garcia-Garcia HM
    Circ Cardiovasc Interv; 2012 Oct; 5(5):620-32. PubMed ID: 23048057
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Clinical Utility of Combined Optical Coherence Tomography and Near-Infrared Spectroscopy for Assessing the Mechanism of Very Late Stent Thrombosis.
    Ino Y; Kubo T; Kameyama T; Shimamura K; Terada K; Matsuo Y; Kitabata H; Shiono Y; Kashiwagi M; Kuroi A; Maniwa N; Ota S; Ozaki Y; Tanaka A; Hozumi T; Akasaka T
    JACC Cardiovasc Imaging; 2018 May; 11(5):772-775. PubMed ID: 29361480
    [No Abstract]   [Full Text] [Related]  

  • 69. Angiographic and clinical outcomes of patients treated with everolimus-eluting bioresorbable stents in routine clinical practice: Results of the ISAR-ABSORB registry.
    Hoppmann P; Kufner S; Cassese S; Wiebe J; Schneider S; Pinieck S; Scheler L; Bernlochner I; Joner M; Schunkert H; Laugwitz KL; Kastrati A; Byrne RA
    Catheter Cardiovasc Interv; 2016 Apr; 87(5):822-9. PubMed ID: 26708019
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In-Scaffold Neovascularization 24 Months After Bioresorbable Vascular Scaffold Implantation in a Patient With ST-Segment Elevation Myocardial Infarction.
    Tomaniak M; Kochman J; Kołtowski Ł; Pietrasik A; Rdzanek A; Filipiak KJ; Opolski G; Regar E
    JACC Cardiovasc Interv; 2017 Jul; 10(13):e123-e125. PubMed ID: 28624381
    [No Abstract]   [Full Text] [Related]  

  • 71. In-Stent Catheter-Induced Neointimal Dissection Assessed by Optical Coherence Tomography.
    Ohmure K; Yoshino S; Fukumoto D; Shimono H; Tabata H; Uchikado Y; Tateishi S; Ohishi M
    JACC Cardiovasc Interv; 2017 Jul; 10(14):1462-1463. PubMed ID: 28668313
    [No Abstract]   [Full Text] [Related]  

  • 72. Complex, diffuse in-stent atherosclerosis over a decade following bare metal stenting.
    Lau JK; Alcock RF; Brieger D; Lowe HC
    Coron Artery Dis; 2015 Aug; 26 Suppl 1():e69-70. PubMed ID: 26247273
    [No Abstract]   [Full Text] [Related]  

  • 73. Successful use of bioresorbable vascular scaffold in in-stent restenosis previously exposed to vascular brachytherapy.
    Wong KL; Fan KY; Jim MH
    Int J Cardiol; 2015 Feb; 181():1-2. PubMed ID: 25473779
    [No Abstract]   [Full Text] [Related]  

  • 74. First-in-man study evaluating the safety and efficacy of a second generation biodegradable polymer sirolimus-eluting stent in the treatment of patients with de novo coronary lesions: clinical, Angiographic, and OCT outcomes of CREDIT-1.
    Wang G; Sun Z; Jin Q; Xu K; Li Y; Wang X; Ma Y; Liu H; Zhao X; Wang B; Deng J; Guan S; Ge M; Wang X; Xu B; Han Y
    Catheter Cardiovasc Interv; 2015 Mar; 85 Suppl 1():744-51. PubMed ID: 25630447
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of in-stent neoatherosclerosis and tissue characteristics between early and late in-stent restenosis in second-generation drug-eluting stents: an optical coherence tomography study.
    Sabbah M; Kadota K; El-Eraky A; Kamal HM; Abdellah AT; El Hawary A
    Int J Cardiovasc Imaging; 2017 Oct; 33(10):1463-1472. PubMed ID: 28444549
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Procedural findings and early healing response after implantation of a self-apposing bioresorbable scaffold in coronary bifurcation lesions.
    Holck EN; Fox-Maule C; Barkholt TØ; Jakobsen L; Tu S; Maeng M; Dijkstra J; Christiansen EH; Holm NR
    Int J Cardiovasc Imaging; 2019 Jul; 35(7):1199-1210. PubMed ID: 31053981
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Very late bioresorbable vascular scaffold thrombosis: a new clinical entity.
    Azzalini L; Al-Hawwas M; L'Allier PL
    EuroIntervention; 2015 May; 11(1):e1-2. PubMed ID: 25982486
    [No Abstract]   [Full Text] [Related]  

  • 78. Ruptured neoatherosclerosis presenting as a large intrastent neointimal dissection.
    Rivero F; Cuesta J; Benedicto A; Bastante T; Alfonso F
    JACC Cardiovasc Interv; 2014 Nov; 7(11):e169-70. PubMed ID: 25459046
    [No Abstract]   [Full Text] [Related]  

  • 79. Fate of Bioresorbable Vascular Scaffold Metallic Radio-Opaque Markers at the Site of Implantation After Bioresorption.
    Suwannasom P; Onuma Y; Campos CM; Nakatani S; Ishibashi Y; Tateishi H; Grundeken MJ; Stanetic B; Nieman K; Jonker H; Garcia-Garcia HM; Serruys PW;
    JACC Cardiovasc Interv; 2015 Jul; 8(8):1130-1132. PubMed ID: 26205450
    [No Abstract]   [Full Text] [Related]  

  • 80. Very long-term serial luminal changes after sirolimus-eluting stent implantation and progression process of very late stent failure.
    Kubo S; Ohya M; Kuwayama A; Shimada T; Miura K; Amano H; Otsuru S; Habara S; Tada T; Tanaka H; Fuku Y; Goto T; Kadota K
    Cardiovasc Revasc Med; 2018; 19(1 Pt B):88-94. PubMed ID: 28778392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.