BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28866161)

  • 1. A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering.
    Wang Q; Chu Y; He J; Shao W; Zhou Y; Qi K; Wang L; Cui S
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():232-242. PubMed ID: 28866161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong and biocompatible three-dimensional porous silk fibroin/graphene oxide scaffold prepared by phase separation.
    Wang SD; Ma Q; Wang K; Ma PB
    Int J Biol Macromol; 2018 May; 111():237-246. PubMed ID: 29320721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering.
    Gupta P; Adhikary M; M JC; Kumar M; Bhardwaj N; Mandal BB
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30797-30810. PubMed ID: 27783501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications.
    Nourmohammadi J; Roshanfar F; Farokhi M; Haghbin Nazarpak M
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():951-958. PubMed ID: 28482612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone-mimicking scaffold based on silk fibroin incorporated with hydroxyapatite and titanium oxide as enhanced osteo-conductive material for bone tissue formation: fabrication, characterization, properties, and
    Watcharajittanont N; Tabrizian M; Ekarattanawong S; Meesane J
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37647902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering.
    Gao Y; Shao W; Qian W; He J; Zhou Y; Qi K; Wang L; Cui S; Wang R
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():195-207. PubMed ID: 29519429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HRP-mediated graft polymerization of acrylic acid onto silk fibroins and in situ biomimetic mineralization.
    Zhou B; Zhou Q; Wang P; Yuan J; Yu Y; Deng C; Wang Q; Fan X
    J Mater Sci Mater Med; 2018 May; 29(6):72. PubMed ID: 29796746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of mechanical and biological performance on hydroxyapatite/silk fibroin scaffolds facilitated by microwave-assisted mineralization strategy.
    Shao YF; Qing X; Peng Y; Wang H; Shao Z; Zhang KQ
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111401. PubMed ID: 33186847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonmineralized and Mineralized Silk Fibroin/Gelatin Hybrid Scaffolds: Chacterization and Cytocompatibility In Vitro for Bone-Tissue Engineering.
    Meng X; Gong K; Sun C; Liu D; Du P; Xu D
    J Craniofac Surg; 2020; 31(2):416-419. PubMed ID: 31764552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration.
    Liu B; Gao X; Sun Z; Fang Q; Geng X; Zhang H; Wang G; Dou Y; Hu P; Zhu K; Wang D; Xing J; Liu D; Zhang M; Li R
    J Mater Sci Mater Med; 2018 Dec; 30(1):4. PubMed ID: 30569403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxylated Agarose (CA)-Silk Fibroin (SF) Dual Confluent Matrices Containing Oriented Hydroxyapatite (HA) Crystals: Biomimetic Organic/Inorganic Composites for Tibia Repair.
    Hu JX; Ran JB; Chen S; Jiang P; Shen XY; Tong H
    Biomacromolecules; 2016 Jul; 17(7):2437-47. PubMed ID: 27314146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits.
    Jin J; Wang J; Huang J; Huang F; Fu J; Yang X; Miao Z
    J Biosci Bioeng; 2014 Nov; 118(5):593-8. PubMed ID: 24894683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo.
    Jo YY; Kim SG; Kwon KJ; Kweon H; Chae WS; Yang WG; Lee EY; Seok H
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28420224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of layered chitosan/silk fibroin/nano-hydroxyapatite scaffolds with designed composition and mechanical properties.
    Zhou T; Wu J; Liu J; Luo Y; Wan Y
    Biomed Mater; 2015 Jul; 10(4):045013. PubMed ID: 26225911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.